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Abstract

Although our knowledge on the stabilising role of biodiversity and on how it is affected by per-
turbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is
transversal to different habitats and perturbations. Hence, we propose a framework that takes
advantage of the multiplicity of components of an ecosystem and their contribution to stability.
Ecosystem components can range from species or functional groups, to different functional traits,
or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional
hypervolumes to define ecosystem states and assess how much they shift after environmental
changes have occurred. We demonstrate the value of this framework with a study case on the
effects of environmental change on Alpine ecosystems. Our results highlight the importance of a
multidimensional approach when studying ecosystem stability and show that our framework is
flexible enough to be applied to different types of ecosystem components, which can have impor-
tant implications for the study of ecosystem stability and transient dynamics.
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INTRODUCTION

Across the globe, ever-increasing changes to ecosystems such
as regional intensification or land-use abandonment, and cli-
mate change, threaten taxonomic and functional composition
and associated ecosystem functions and services (D�ıaz et al.
2006; Weiner et al. 2014; Kortsch et al. 2015; Oliver et al.
2015). These changes may compromise the ability of ecosys-
tems to recover from future perturbations and lead to depar-
tures from stability, which may ultimately result in shifts to
other ecosystem states (see, for instance, the review by Stan-
dish et al. 2014).
Therefore, studying stability is important to understand the

response of ecosystems to afore mentioned land-use and cli-
mate changes. Stability is a multifaceted concept that can be
studied in different ways (e.g. Ives 1995 mathematically
explored equilibria, while Mazancourt et al. 2013 studied the
temporal variability of particular ecosystem components).
However, most empirical studies on ecosystem stability have
been focused on the role of biodiversity for the stabilisation
of a particular ecosystem function – biodiversity-ecosystem
functioning (BEF) studies (e.g. Tilman & Downing 1994;
Jousset et al. 2011; Pillar et al. 2013). The majority of these
studies have aimed at understanding how biodiversity main-
tains and promotes productivity (e.g. Cadotte et al. 2012;
Roscher et al. 2012; but see Hautier et al. 2015) and have
shown that the processes through which this occurs can differ
between communities (Morin et al. 2014). Fewer studies

investigated the stability of biodiversity itself to perturbations
– perturbation-biodiversity studies. These have shown that
relationships between taxonomic and functional diversity can
change across environmental and disturbance gradients (Flynn
et al. 2009; Biswas & Mallik 2011), affecting the relationship
between ecosystem function and biodiversity (shown for
steppe communities by Zhou et al. 2006). However, studies
rarely investigated the impact of disturbances on the stability
of ecosystem function and of biodiversity together (but see
Steudel et al. 2012). This is an important drawback, since
both the stability of ecosystem functions and of ecosystem
structure and composition can be important aspects in terms
of management planning and policy making for complex
ecosystems, especially if several types of habitats exist and
ecotone dynamics can change (MacDonald et al. 2015).
Considering how different components of an ecosystem –

e.g. species abundances, their functional and phylogenetic
composition, and resulting ecosystem functions and services
(cf. Table 1 for a non-exhaustive list of components relevant
for different facets of ecosystem stability) – contribute to its
stabilisation can be important in complex ecosystems, where
summarising stability into a single metric might be a challenge
and likely inaccurate. For instance, diverse habitat mosaics
can be composed of communities that are very different in
terms of productivity levels and their seasonality, but all
equally stable in terms of species richness. In such cases,
ecosystem stability is not easily summarised by a single metric,
such as productivity, and considering multiple taxonomic and
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functional community components is likely to provide better
information about overall ecosystem stability.
Defining the state of a complex ecosystem can be challeng-

ing, since ecosystems and their multiple components often
have temporal fluctuations. In a two-dimensional case, these
oscillations are usually well represented in phase portraits,
where the two response variables are plotted against each
other at several points in time (Fig. 1). If the system reaches
equilibrium, its trajectory will converge to an equilibrium
point, or a limit cycle in an oscillatory equilibrium (Fig. 1b).
In complex systems involving more than two response vari-
ables (Fig. 1c), the trajectory becomes a path in n-dimensional
space. In this case, the ecosystem state can be described as an
n-dimensional cloud of points or an n-dimensional hypervol-
ume (Fig. 1d). An ecosystem state is then determined by both
the intrinsic dynamics of its components and environmental
conditions. If changes in these conditions occur and the
ecosystem is disturbed, ecosystem components and their tra-
jectories may be affected, leading to another n-dimensional
hypervolume (Fig. 1d). Comparing the two hypervolumes will
provide an assessment of the magnitude of changes the
ecosystem suffered, i.e. its shift from the initial state.
Although in this study we were not interested in detecting
shifts between alternative stable states, sensu Scheffer et al.
(2001), the ball-and-cup analogy of resilience (Holling 1996;
Folke et al. 2004) provides an intuitive visual representation
of how n-dimensional hypervolumes relate to ecosystem stabil-
ity. If we consider that n-dimensional hypervolumes represent
the states of a system under different environmental

conditions, comparing hypervolumes before and after pertur-
bations will reflect how far the system has moved from its ini-
tial basin of attraction (i.e. state; Figs. 1e, f, g). Our focus is
not on how fast a community returns to its pre-perturbation
state (engineering resilience, or the basin’s slope), nor to assess
whether the community has undergone a permanent state
shift. Although these can be investigated, here, we focus on
the departures from an ecosystem state (stable or transient),
i.e. the magnitude of changes that the ecosystem suffered.
We, thus, propose using hypervolumes built from several

components of an ecosystem as a means to reflect their inte-
grated variability. The choice of the type of components will
depend on what the analysis of stability falls unto. We believe
that ecosystem stability should be investigated across different
components; the approach we propose here is sufficiently flex-
ible to be applied to different sets of data and can be used for
this integrative approach (Table 1). For example, if the
research focus is on the stability of biodiversity at the commu-
nity scale, time series of species abundances or community-
weighted means (CWMs) or variances (CWV) of functional
traits (i.e. trait values of all species in the community weighted
by species abundances) can be used. At a larger scale, the sta-
bility of biodiversity can also be assessed using taxonomic,
functional and phylogenetic diversity metrics that can consti-
tute the hypervolumes. At the landscape scale, in mosaic
ecosystems, it may be interesting to analyse stability in terms
of proportions of different habitat patches, building hypervol-
umes from coverage values of each habitat type.
We present this novel approach using simulated plant com-

munities of different habitats in the European Alps. In Alpine
mountain ecosystems, sharp gradients drive both abiotic and
biotic constraints that result in the presence of distinct plant
communities within relatively small spatial extents. These sys-
tems are especially vulnerable to climate and land-use changes
(LUC; Serreze et al. 2000; Tappeiner & Bayfield 2004; Dullin-
ger et al. 2012; Thuiller et al. 2014), since they harbour spe-
cies that are frequently at their niche limits and are likely to
respond faster to environmental change (Wookey et al. 2009;
Rigling et al. 2013). For example, land-use abandonment and
climate warming can cause shifts in grassland composition
and structure, leading to woody encroachment (Tasser & Tap-
peiner 2002; Asner et al. 2004) and changes in forest-grassland
ecotones (Boulangeat et al. 2014a; Carlson et al. 2014).
Hence, these ecosystems provide a rich study case for our pro-
posed framework. Our results show that the framework suc-
cessfully distinguishes what types of perturbations most affect
Alpine communities and can provide indication of how differ-
ent community components respond to the same perturbation.
More importantly, this framework is a successful first step
into integrating the multiplicity of ecosystem components for
the analysis of ecosystem stability in a global change context.

A GENERAL FRAMEWORK FOR COMPARING

COMMUNITY STATES

Our framework to study ecosystem stability in face of envi-
ronmental changes using n-dimensional hypervolumes is pre-
sented in two sections. In the present section, we explain
the workflow and its four steps in general terms (Fig. 2). In

Table 1 Examples of components that can be considered for assessing

ecosystem stability using the hypervolumes framework. In this non-

exhaustive list, types of ecosystem components are sorted by increasing

level of organisation, although some can be considered across different

organisational scales (e.g. diversity metrics). We distinguished between

ecosystem functioning components and ecosystem services components

following Lavorel & Grigulis (2012).

Ecosystem components

Increasing level

of organisation
• Organisms (usually raw/relative abundances, cover)

e.g. species, guilds, functional groups, MOTUS

(molecular operational taxonomical units).

• Community trait values (generally averaged and

weighted by species abundance, but variances

in trait values can also be used)

• Diversity metrics

e.g. taxonomic richness and evenness, functional

richness, evenness, divergence and dispersion,

mean phylogenetic distance.

• Properties of ecological networks

e.g. species diversity, connectance, modularity

• Habitat/vegetation cover

• Ecosystem functioning (often productivity,

but other functions like nutrient cycling can also

be considered)

e.g. biomass, nitrogen, carbon and water

availability

• Ecosystem services

e.g. quantity and quality of fodder, nutrient

cycling, carbon storage, water quality
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the second section, we present its application to a case
study, aiming to assess the departures of distinct plant com-
munities from their initial states in a national park, in the
French Alps.

Step 1. Choice of components

To detect changes in ecosystem states, we propose building n-
dimensional hypervolumes using time series of n-ecosystem
components at equilibrium (Fig. 2, Step 1). A wide range of
different components can be used (Table 1). Ultimately, the
choice of components depends on what properties and

changes are under focus. For instance, if the user wishes to
focus on changes in community structure and evenness pat-
terns, relative species abundances should be considered, while
changes in overall species abundances should be followed
using raw abundances if the rareness of species is important
for the research question. On the other hand, if the focus is
on a community’s functional characteristics and structure,
then functional traits should constitute the hypervolumes.
Also, depending on the chosen components, stability can be
assessed at different spatial scales. For simplicity, we hence-
forth speak about community stability, but the same approach
can be applied at the habitat and landscape scales.

(a)

(c)

(e) (f) (g)

(d)

(b)

Figure 1 The utility of phase portraits for studying stability. A system of (a) two species can be represented by (b) a classical two-dimensional phase portrait.

The system’s state at equilibrium is represented by a circling behaviour in (b) that corresponds to oscillations of species abundances in (a). This concept can be

extended to higher dimensions, where the (c) dynamics of a three species community are represented by (d) a three-dimensional phase portrait. In

multidimensional space, states at equilibrium become clouds of points in (d), which can be represented by n-dimensional hypervolumes (schematic cubes).

Comparisons between hypervolumes can be related to the ball-and-cup analogy of resilience, as they indicate departures from the initial state that can happen

(e) within the same basin of attraction, (f) when the system shifts to an alternative stable state, or (g) when the equilibrium is displaced (see Beisner et al. 2003;

Horan et al. 2011).
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Finally, hypervolumes can be used to follow community
changes in time, by building separate hypervolumes for differ-
ent time slices and comparing between them, or against a ref-
erence period. Alternatively, ‘space-for-time’ comparisons can
also be used if hypervolumes are built from replicates of com-
munities under different disturbance treatments.

Step 2. Data treatment and hypervolume calculation

Components that will constitute the axes for hypervolume
calculation must follow certain criteria (Fig. 2, Step 2). To
start with, the number of dimensions will influence hyper-
volume metrics and should be fixed to ensure comparability
between hypervolumes (Blonder et al. 2014). Components
entering the analysis should be in comparable units (e.g.
centred and scaled) and uncorrelated (Blonder et al. 2014).
When the different components one wants to include are
correlated, we suggest the use of multivariate analyses, such
as principal components analyses (PCAs), or Hill and Smith
analyses (Hill & Smith 1976) if a mix of continuous, cate-
gorical and ordinal variables are used (e.g. Heiser et al.
2014). Alternatively, principal coordinates analyses (PCoAs)
based on distance matrices and designed to represent differ-
ences between objects as faithfully as possible (i.e. distances
based on traits values), are also a suitable option (Maire
et al. 2015). These approaches will reduce dimensionality
and extract a number of centred and scaled orthogonal axes

from the data. Hypervolumes are then built using the factor
scores on the chosen principal components (PCs), or the
pre-selected uncorrelated (and eventually scaled) variables.
Since the interest is to assess differences between pre- and
post-perturbation states of a given community (comparing
pre- and post-perturbation hypervolumes), the PCA is calcu-
lated on the pre- and post-perturbation datasets together;
separate hypervolumes should then be calculated from the
factor scores corresponding to each dataset. The final num-
ber of variables, or PCs, to be used should be decided
based on knowledge of key components for community sta-
bility, the percentage of explained variance, or expert
knowledge. When using a PCoA, Maire et al. (2015) pro-
posed to assess the quality of the reduced space using the
mean squared deviation between the initial distances
between objects (e.g. trait values) and the standardised dis-
tances in the new space. In any case, the number of vari-
ables/PCs should not exceed 5–8, to avoid having highly
disjunct hypervolumes (hypervolumes with ‘holes’; Blonder
et al. 2014).
The calculation of hypervolumes follows a multidimensional

kernel density estimation procedure. Briefly, this consists in
the estimation of overlapped hyperbox kernels from which a
uniform point density is extracted using random sampling,
importance-sampling and range-testing techniques (see Blon-
der et al. 2014 for detailed description). The values of kernel
bandwidths can be chosen by the user and should avoid

Figure 2 Framework scheme. Several types of time series data can be used (Step 1). In our study case, we used simulated plant functional groups’ (PFG)

abundances and community-weighted mean (CWM) trait values per habitat-land-use combination, under a given scenario of land-use and/or climate

changes. Variables used for hypervolume calculations should be scaled and uncorrelated (Step 2), which was ensured by selecting axes extracted from

principal components analyses (PCAs) on scaled time series of PFG abundances and of CWM trait values. Pre- and post-perturbation hypervolumes are

then calculated using, in this example, the PCAs factor scores referring to control (scenario 1) and post-perturbation data (remaining scenarios), and then

compared (Step 3). Comparisons between hypervolumes can be complemented using other metrics (Step 4) for a further analysis of community changes. In

Step 3, ‘POC’ stands for ‘POC’ hypervolumes (see methods section ‘Step 3. Comparing hypervolumes to analyse community changes’).
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having disjoint observations (which cause disjunct hypervol-
umes; Blonder et al. 2014). Although there is no minimum
number of data points needed to compute the hypervolumes,
analyses with few observations (roughly < 10 times the num-
ber of dimensions) are more influenced by the choice of band-
width (Blonder et al. 2014). In the scope of our approach, we
suggest a standardised method to choose the bandwidth value
in Appendix S1, guaranteeing comparability between different
hypervolumes even with low sample size.

Step 3. Comparing hypervolumes to analyse community changes

Sufficiently large changes in environmental conditions are
expected to produce shifts in community structure and compo-
sition that will cause the hypervolume to shift. We propose
three metrics to assess differences in pre- and post-perturbation
states (Fig. 2, Step 3) that focus on: (1) the overall similarity/
dissimilarity between two states, (2) changes in mean values of
the chosen components and (3) changes in their variance.
First, the proportion of overlap between pre- and post-per-

turbation hypervolumes (Fig. 1d) will reflect overall differ-
ences between the two corresponding states. Overlap is
calculated as the ratio between the intersection volume and
the total volume occupied by the two hypervolumes, being
expected to decrease as a community changes. For instance, if
a plant community has suffered significant changes in struc-
ture and composition and became another vegetation type,
hypervolumes will be farther away and may not intersect
(overlap = 0). Whether or not this indicates a permanent
state-shift (i.e. irreversible even if environmental conditions
are returned to pre-shift values) will depend on the commu-
nity in question and the type of disturbance. Conversely, if
hypervolumes intersect, their overlap will be indicative of sim-
ilarities between them.
Second, the distance between the centroids of the pre- and

post-perturbation hypervolumes will reflect how much mean
values of the ecosystem components have departed from their
pre-perturbation levels (changes in mean values).
Third, changes in hypervolume size may indicate changes in

the amplitude of variation of the selected components
(changes in variance).
It is also important to consider that in certain cases, the

number of observations used to calculate the hypervolumes
may differ. Blonder et al. (2014) did not discuss this issue and
seemed to compare hypervolumes calculated using data with
different sizes (see their example of morphological compar-
isons of species of Darwin’s finches); however, we suggest that
in these cases, the user can perform randomised permutation
testing with data subsets (see e.g. Brandl & Bellwood 2014) to
avoid influencing comparisons between hypervolumes.

Step 4. Complementary metrics for more detailed analyses

Hypervolume comparisons per se do not provide information
about what type of changes the community went through.
Hence, we suggest analysing complementary metrics that
reflect changes in community composition or structure (Fig. 2,
Step 4). The choice of these metrics depends on the focus of
the analysis and on the ecosystem components being analysed.

For instance, when studying the stability of taxonomic and
functional composition, we recommend using indices that
reflect changes in taxonomic, functional or phylogenetic diver-
sity (or their combination), both in average terms and in
terms of dispersion (see Pavoine & Bonsall 2011 for a detailed
review).

ILLUSTRATION: A MOSAIC ALPINE LANDSCAPE

UNDER LAND-USE AND CLIMATE CHANGES

Our general framework has the ability of deciphering the con-
sequences of environmental changes for ecosystems over large
spatial scales and heterogeneous landscapes, while analysing
multiple ecosystem components at the same time. This is illus-
trated by the following analysis of a mosaic alpine landscape
within a national park subject to abrupt land-use and climate
changes.

Case study and simulated vegetation dynamics

The Ecrins National Park (ENP) is situated in southeast
France in the French Alps, covering a surface area of
178 400 ha. It is composed of a mosaic of mountainous to
alpine ecosystems, harbouring a rich flora (~ 2000 species)
and present land-use practices are accurately mapped (exten-
sive grazing, 50%, crop fields and mown grasslands, 15%,
and forest management, 10%). The ENP presents an interest-
ing case where highly diverse Alpine landscapes face current
threats of changing land-use practices and climate warming,
which are likely to have synergistic effects.
To simulate the vegetation dynamics and associated com-

munity shifts resulting from climate and LUCs, we used
FATE-HD, a recently developed dynamic landscape vegeta-
tion model that has been previously parameterised for the
ENP (Boulangeat et al. 2014b). The model simulated the spa-
tiotemporal dynamics of 24 plant functional groups (PFGs,
see Table S1; Boulangeat et al. 2012) at 100 m resolution.
Competition for light between PFGs, their population dynam-
ics, dispersal and responses to land-use regimes and climate
are all explicitly modelled. Land-use regimes were modelled
spatially and included grazed areas with three levels of inten-
sity (low, medium and high) and mown areas. Yearly outputs
used here were the abundance of each PFG in each pixel. A
more detailed description of the study area and of FATE-HD
can be found in Appendix S2; we refer the reader to Boulan-
geat et al. (2014b) for model details and parameterisation,
and to Boulangeat et al. (2014a) for details on chosen climate
and LUC scenarios.

Scenario building

FATE-HD is an equilibrium model, having the capacity of
internal regulation and feedback mechanisms that contribute
to a directional response of equilibrium system behaviour.
Therefore, it successfully simulated the equilibrium vegetation
dynamics of the ENP subject to present land-use (mowing
and grazing; Boulangeat et al. 2014b). Based on those vali-
dated simulations, we analysed six different scenarios (after
Boulangeat et al. 2014a): no change at all (control scenario),
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abandonment of all grazing and mowing activities (scenario
2), intensification of grazing (to high levels) in all grazed areas
and creation of new grazing and mowing areas (scenario 3)
and the previous three scenarios combined with climate
change (scenarios 4–6; Fig. 2).
An initialisation phase was run for 1650 years to reach pre-

sent equilibrium vegetation dynamics (see Appendix S2 for
details). Scenarios were then applied to the equilibrium state.
LUCs were applied 4 years after the equilibrium was reached
and changes were kept until the end of the simulation; climate
change (CC) was applied continuously from the 15th to the
90th year after equilibrium was reached and remained con-
stant afterwards until the end of the simulation. Scenario sim-
ulations were run for a total of 500 years after the
initialisation phase to allow the establishment of new equilib-
ria. Both the initialisation phase and scenario simulations
were replicated three times.
Given the high heterogeneity of the ENP and to avoid mix-

ing together ecosystems with contrasted vegetation dynamics,
we decided to analyse community stability through the lens of
habitat type (see Appendix S2 for the list of habitat types and
their map in Fig. S1a) and current land uses (grazing intensi-
ties low, medium and high, mowing and non-disturbed habi-
tats, as well as potentially grazed, mown and non-disturbed
habitats under intensification scenarios; see Fig. S1b for land-
use maps), taking advantage of the very detailed habitat and
land-use characterisation of the ENP (Esterni et al. 2006). For
example, all woodland mosaics under present grazing pressure
were considered together (the pixel-based abundances of
PFGs being summed across the same habitat type). This
resulted in temporal information on the 24 PFG abundances
in 56 pairs of habitat and land-use types.
We applied our framework to explore the differences between

pre-perturbation and post-perturbation community states in
two ways: (1) an analysis focusing on differences between pre-
and post-perturbation states and (2) an example focused on
analysing temporal stability. Where appropriate, we distinguish
the methodology and results referring to these two approaches.

Step 1. Choice of components

As we were interested in the stability of taxonomic and func-
tional diversity at the community level, we chose to use the
time series of PFG abundances (24 components) and the time
series of CWM trait values (4 components), which we anal-
ysed independently from each other. We calculated yearly raw
and relative PFG abundances for each habitat and land-use
combination by summing them across the ENP.
To estimate changes in the overall trait combination of each

habitat type for a given land use, we calculated CWM trait
values based on the simulated abundances of each PFG and
their respective trait values (Table S1). We selected three traits
reflecting the leaf-height-seed (LHS) plant ecology strategy by
Westoby (1998) – mean specific leaf area (SLA), log-height,
log-seed mass – plus one reflecting PFG responses to grazing
– palatability. Palatability was treated as a continuous trait to
allow a better representation of the variability in its CWM
values (hence, we followed the assumption that palatability
classes are evenly spaced; Jouglet 1999).

Step 2. Data treatment and hypervolume calculation

To ensure orthogonality and a feasible number of dimensions
for hypervolume calculations, we used PCAs on the abun-
dances (raw or relative) of the 24 PFGs and on the CWM
trait values. Data scaling was done prior to the PCA, using
root mean squares on both the control and scenario of change
datasets together. We then selected the first six orthogonal
PCs to be used as dimensions for the ‘PFG hypervolumes’,
which still retained a cumulative explained variance > 95%
(obtained using raw PFG abundances; Fig. S2). The same
number of axes was used to build hypervolumes from relative
PFG abundances. As for ‘trait hypervolumes’, we used the
totality of the four PCs, since only four traits were selected,
the PCA only ensuring orthogonality. Hypervolumes were
then built using the factor scores on the selected axes.
Although we treated all traits as continuous variables, in
other situations, a mix of continuous, categorical and ordinal
traits may be wanted. In these cases, the PCA can be substi-
tuted by a generalisation of the Hill and Smith analysis avail-
able in the ‘ade4’ R package, dudi.mix (Dray & Dufour 2007).

Comparing two states
To assess differences between pre-perturbation and post-pertur-
bation states, we compared PFG and trait hypervolumes of the
control scenario (no LUC, no CC) to the five scenarios of LUC
and/or CC (post-perturbation hypervolumes), for each habitat-
land-use combination and each of the three repetitions. Control
hypervolumes were calculated from the 500 years of the control
scenario (no climate and no LUCs, equivalent to a pre-pertur-
bation state), while the last 100 years of the five scenarios of
LUC/CC were used to calculate post-perturbation hypervol-
umes, since vegetation had stabilised by then.

Assessing temporal stability
In addition, we analysed the potential of our framework to
investigate temporal stability using a demonstrative example.
We selected two habitats (grasslands and thickets and scrub-
lands) subjected to current land-use practices (three intensities
of grazing, mowing and no-disturbance) and CC (scenario 5).
We focused on community responses during and shortly after
climate changes, analysing the first 150 years of the scenario
simulation. Time series of raw and relative PFG abundances
were broken into time steps of 15 years length, from which
hypervolumes were built. The calculation of hypervolumes fol-
lowed the description above, with control datasets spanning
the 15 years prior to the first climate change (control hyper-
volume) and subsequent time steps of 15 years considered as
post-perturbation data (post-perturbation hypervolumes).

Step 3. Comparing hypervolumes

As a proof-of-concept (POC) of our method, we first tested
our framework on the control scenario where nothing should
be detected in theory. We did this by (1) comparing control
hypervolumes to ‘POC’ hypervolumes calculated from an
additional 100 years ran from the end of the initialisation
phase (for both PFG abundances and CWM traits) and (2)
comparing the first time step hypervolume to itself (i.e.
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control hypervolume, built from the first 15 years of the sce-
nario simulation). These comparisons provided a ‘no change’
baseline that was used as reference for statistical analyses and
to interpret results.

Comparing two states
Hypervolume comparisons (proportion of overlap, centroid
distances and changes in size) were made for pairs of control
and post-perturbation hypervolumes (control vs. scenario
hypervolumes; control vs. POC hypervolumes) for each habi-
tat-land-use combination and each repetition, resulting in
1008 comparisons (five scenarios against the control and POC
against the control 9 56 habitat-land-use combinations 9 3
repetitions). Changes in control vs. post-perturbation hyper-
volume sizes (Dsize) were calculated as the difference between
post-perturbation and control hypervolume sizes, after scaling
them relatively to the largest hypervolume obtained across
communities (enabling a comparison between PFG and trait
hypervolumes).
Repetitions were analysed together as samples of a same

treatment. Effects of CC, LUC and habitat-land-use combina-
tions (explanatory variables) on overlap, centroid distances
and Dsize (response variables) were assessed using analyses of
variance (ANOVAs). In all model analyses, control vs. POC
hypervolume comparisons were used as ‘no change’ observa-
tions that corresponded to no climate and no LUCs. Linear
model assumptions (normality and homoscedasticity of residu-
als) were ensured by doing a square-root transformation on
overlap values from raw PFG abundance and from trait
hypervolumes, and a variant of the logit transformation on
overlap values from relative PFG abundances (see
Appendix S3 for details). Centroid distances and Dsize values
did not require any transformation; however, extreme outliers
were removed from the analyses of Dsize values of relative
PFG abundances and trait hypervolumes (two and three out-
liers respectively); best models were selected on the basis of
AICc scores, starting with full models (one response variable
in function of all explanatory variables and all their possible
interactions) that were gradually simplified (final models are
listed in Table S2 and in Appendix S3). Model outputs were
analysed in terms of the importance of main effects and inter-
action effects, while differences between factor levels were
analysed graphically (fitted values were back-transformed
where appropriate), due to the high number of level
combinations.

Assessing temporal stability
To assess changes in hypervolumes through time, the first
time step [control] hypervolume was compared against each
hypervolume from subsequent time steps. This was done for
270 pairs of hypervolumes (first time step against 9 subse-
quent time steps 9 1 scenario 9 10 habitat-land-use combina-
tions 9 3 repetitions). We focused on the temporal evolution
of overlap and analysed its response to CC under different
habitat-land-use combinations using generalised additive mod-
els (GAMs), with a Gaussian smoother fitted for each habitat-
land-use combination. Overlap values of relative PFG abun-
dances were analysed after a square-root transformation,
which improved the residual distribution of the models.

Step 4. Complementary metrics for more detailed analyses

For a deeper analysis on how pre- and post-perturbation states
differed, we calculated yearly complementary metrics for each
habitat-land-use combination and each scenario. Yearly PFG
a-diversity was calculated as the inverse Simpson concentration
to reflect changes in taxonomic richness and evenness (Leinster
& Cobbold 2012). Two functional diversity indices, functional
dispersion (FDis; Lalibert�e & Legendre 2010) and functional
evenness (FEve; Vill�eger et al. 2008) were used to assess
changes in average functional distances in the community and
their variance among PFGs respectively (Pavoine & Bonsall
2011). Analogously to hypervolume comparisons, these indices
indicated changes in the mean and variance of functional a-
diversity. Finally, we also calculated total productivity, in the
form of total PFG abundance, since it has been used to study
ecosystem responses to perturbations (e.g. Kerkhoff & Enquist
2007; Polley et al. 2013; Keersmaecker et al. 2014).
The responses of diversity indices and productivity to CC,

LUC and habitat-land-use combinations were also analysed
statistically (detailed in Appendix S4). Since the analysis of
temporal stability was merely demonstrative, complementary
metrics were not used in this situation.
Hypervolumes were calculated using the recently made

available R package ‘hypervolume’ (Blonder et al. 2014).
Selection of optimal bandwidth sizes for each set of compo-
nents is detailed in Appendix S1 (along with a sensitivity anal-
ysis of bandwidth effects on overlap). All hypervolumes were
built using a quantile threshold of 0% (Blonder et al. 2014).
Functional diversity indices were calculated within the R
package ‘FD’ (Lalibert�e & Legendre 2010). Source code for
calculating and comparing hypervolumes, together with nine
example datasets are available in Appendix S5.

RESULTS

Comparing two states

We assessed differences between pre- and post-perturbation
states by comparing hypervolumes built from the control sce-
nario with hypervolumes built from each scenario of change
(but see examples of full system trajectories in Fig. 3). Con-
cerning PFG hypervolumes, here, we present results obtained
using raw abundances, instead of relative abundances, because
we were interested in accounting for changes in the abun-
dances of all PFGs, rather than focusing on structural and
dominance changes. In general, comparisons between hyper-
volumes built from relative abundances resulted in more fre-
quent intersections and larger overlaps, smaller distances
between hypervolumes and smaller size changes (full results
are available in Appendix S3).

Testing the framework: confronting POC and control
hypervolumes
When comparing ‘POC’ and control hypervolumes, 100% of
all pairs of hypervolumes intersected and the proportion of
overlap between them was much larger than that obtained
between control and post-perturbation hypervolumes (Fig. 4).
Also, centroid distances (Fig. 5a, b) were always small, despite
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changes in hypervolume size in disturbed areas (Dsize; Fig. 5c,
d). These results confirmed that our approach is not prone to
detecting wrong community shifts.

Hypervolume intersections and overlap
Only 3% of all PFG hypervolume comparisons and 13% of all
trait hypervolume comparisons resulted in intersections and
overlap was generally small, especially between PFG hypervol-
umes (Fig. 4a). Overlap was significantly affected by CC, LUC
and habitat-land-use combinations, as well as their two- and
three-way interactions (all effects being significant for P-
value < 0.01), but the order of their importance changed

depending on the type of components used (Fig. S3; Table S2).
Generally, overlaps between pre- and post-perturbation hyper-
volumes indicated that all communities were unstable under CC
(note the absent or small overlaps both for PFG abundance
and trait hypervolumes, Fig. 4). In addition, land-use abandon-
ment strongly affected disturbed communities (in terms of PFG
abundances and CWM trait values; Fig. 4a, b) and land-use
intensification strongly affected non-disturbed communities
(only in terms of PFG abundances; Fig. 4a, c). It is interesting
to note that PFG hypervolumes generally intersected and over-
lapped less than trait hypervolumes (Fig. 4). A more detailed
analysis of the importance of CC, LUC, and habitat-land-use

(a)

(b) (c)

Figure 3 Full system trajectories under different scenarios and land-use practices. The full trajectories of thickets and scrubland vegetation are shown for

three scenarios of climate and/or land-use changes (LUCs), under three types of land-use practices. The first 500 years correspond to the control scenario

(in orange), followed by another 500 years of climate and/or LUCs: land-use abandonment without and with climate change in blue and red (scenarios 2

and 4 respectively) and land-use intensification in purple (scenario 3). Since we are graphically constrained to three dimensions, we plotted the trajectories

using relative abundances of chamaephyte (full lines), herbaceous (dashed lines) and phanerophyte (dotted lines) plant functional groups (by adding up

separate group’s abundances per life form type). The three-dimensional plot in (b) corresponds to trajectories in non-disturbed areas – first two panels in

(a) – whereas in (c) it corresponds to trajectories in intensified grazed areas – last panel in (a).
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combinations for hypervolume overlaps for the different com-
ponents is presented as Supporting Information (see Fig. S3,
Table S2 and Appendix S6).
Finally, hypervolume overlaps were mostly independent from

hypervolume size, with an exception for POC comparisons for
which the two were negatively correlated (Fig. S4). This indicates
that, all else remaining equal (under no perturbations), larger
sizes did not drive larger overlaps.

Distances between hypervolumes and changes in size
In all situations, models explaining the response of centroid
distances and changes in size (Dsize) included all three main
factors (CC, LUC and habitat-land-use combinations) and
possible interactions between them; all model terms were sig-
nificant, but again their relative importance changed depend-
ing on the type of components used and the response
variable (Table S2). While mean PFG abundances were most
affected by CC, LUC and their interaction, the variance in
PFG abundances was most affected by habitat-land-use com-
binations and their interaction with LUC, followed by CC
and remaining terms. On the other hand, mean trait values
were most affected by LUC, CC and their interaction, while
trait variances were most affected by CC and its interactions
with LUC and with habitat-land-use combinations
(Table S2).
Plotting the observed mean centroid distances has shown

that, considering the same LUC, CC almost always increased

the distance between hypervolume centroids, driving changes in
mean PFG abundances and CWM traits (Figs. 5a, b). How-
ever, observed Dsize values show a different pattern. Changes in
variance of PFG abundances seemed to be mostly associated
with habitats being disturbed or not (disturbed habitats show-
ing decreases in variance in post-perturbation hypervolumes;
Fig. 5c), while changes in variance of trait values are associated
with the presence of CC (CC driving increases of variance;
Fig. 5d). Finally, it is also interesting to note that trait hyper-
volumes had generally much smaller sizes (data not shown) and
Dsize values than PFG hypervolumes. We provide further
results of the effects of CC, LUC and habitat-land-use combi-
nations on centroid distances and Dsize as Supporting Informa-
tion (see Figs. S5 and S6, Table S2 and Appendix S6).

Exploring temporal stability

We exemplify the use of our framework to explore the tempo-
ral stability of two different communities that showed oppo-
site results in terms of overlap, when only subjected to CC
(scenario 5, considering PFG hypervolumes): grasslands and
thickets and scrublands. For this analysis, only the first
150 years of the scenario simulation were considered, as we
were interested in following community responses during and
shortly after CC. Again, results presented here were obtained
using raw PFG abundances (see Appendix S3 for results using
relative PFG abundances).

Figure 4 Overlap in disturbed and non-disturbed areas. Proportion overlap between control and post-perturbation hypervolumes of (a, c) PFG raw

abundances – (a) and (c) only differ in the y-axis scale – and (b) CWM trait values. The proportion of overlap (overlap) was calculated as the ratio

between the intersection volume and the total volume occupied by the two hypervolumes (standard errors shown as error bars). Observed mean overlaps

are shown by scenario, across all habitat types and grouped by disturbed areas (areas under present grazing or mowing regimes and areas that will become

grazed on mown under scenarios of land-use intensification) and non-disturbed areas (all areas that are not currently grazed or mown and those that will

remain so, under land-use intensification scenarios). Standard errors are shown as error bars. Comparisons between ‘POC’ and control scenario

hypervolumes are shown in (a) and (b), but not in (c), so that overlap values obtained in other scenario comparisons can be seen.
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Testing the framework: comparing first time step hypervolume
with itself
Confronting the first time step hypervolume to itself provided
an estimate of the variability associated with the calculation
of hypervolumes and their overlap, as well as a baseline values
for the temporal analysis of changes in hypervolumes. Overlap
was always positive and generally similar between habitat-
land-use combinations (Fig. 6). It was also always larger than
the overlap measured between the first time step and subse-
quent time steps (Fig. 6).

Hypervolume overlap in time
Overlap decreased in time as communities changed, reaching 0
before the CC period ended; yet, the rate at which it decreased
depended on the habitat-land-use combination (Fig. 6). Mown
grasslands were less stable, showing larger and faster decreases
of overlap, while grasslands grazed at low intensity (‘grazed
areas1’) were more stable, showing slower decreases of overlap
(Fig. 6). Thickets and scrublands were generally less stable,
with overlap values reaching 0 before they did so in grassland
habitats. Mown thickets and scrublands had smaller overlaps
even before CC started.

Complementary metrics

Models of PFG a-diversity showed that this metric was not
significantly affected by any of the model terms included
(Table S3). However, a graphical analysis of mean PFG

a-diversity across the last 100 years of the simulations showed
that when compared with control levels, the abandonment of
disturbed areas increased PFG diversity, while CC and land-
use intensification generally decreased it (Fig. S7).
Metrics of functional a-diversity responded significantly to

all effects, with the exception of FEve, which was not differ-
ently affected by CC when land-use was intensified (see ‘set 2’
models and Appendix S4; Table S3). Yet, the importance of
CC, LUC and habitat-land-use combinations depended on the
metric used (Table S3). For instance, like hypervolume met-
rics, FEve was most affected by LUC, CC and their combina-
tion; yet, FDis was more affected by the interaction between
CC and LUC, followed by habitat-land-use combinations,
while CC alone had a comparatively weaker effect. As with
PFG a-diversity, FEve generally increased after land-use
abandonment and decreased after CC and land-use intensifica-
tion (when compared to control levels; Fig. S8b). FDis had
similar responses to FEve, but differences between disturbed
and non-disturbed areas in terms of mean FDis were usually
smaller (Fig. S8c).
Finally, productivity was also significantly affected by all

model terms included, with habitat-land-use combinations
having the strongest effect on its variation (sets 1 and 2;
Table S3). Mean productivity in non-disturbed areas was
much higher than in disturbed areas, even after abandonment.
As with metrics of taxonomic and functional diversity, mean
productivity increased after land-use abandonment and
decreased after CC and land-use intensification (Fig. S10).

Figure 5 Mean distances and changes in size, in disturbed and non-disturbed areas. Mean centroid distances between control and post-perturbation

hypervolumes and differences in their sizes (post-perturbation minus pre-perturbation; Dsize) are shown for (a, c) PFG raw abundances and (b, d) CWM

trait values. Negative Dsize values indicate that the post-perturbation hypervolume was smaller than the pre-perturbation hypervolume, and vice-versa for

positive Dsize values. Both metrics are shown by scenario, across all habitat types and grouped by disturbed areas (areas under present grazing or mowing

regimes and areas that will become grazed on mown under scenarios of land-use intensification) and non-disturbed areas (all areas that are not currently

grazed or mown and those that will remain so, under land-use intensification scenarios). Standard errors are shown as error bars. Comparisons between

‘POC’ and control scenario hypervolumes are also shown.
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DISCUSSION

Environmental changes impact biodiversity at different levels
and may lead to changes in community and ecosystem struc-
ture and functioning. Instead of studying ecosystem stability
through the lens of single diversity or ecosystem functioning
metrics, we propose that the contribution of different taxo-
nomic, functional or landscape entities should be considered.
Our framework makes use of n-dimensional hypervolumes to
assess changes in ecosystem states that are driven by the
responses of different ecosystem components to environmental
changes. It provides a flexible way to quantitatively assess
ecosystem changes and the relative impact of different distur-
bances on ecosystem stability. Most importantly, it allows
analysing ecosystem responses at different levels of biodiver-
sity and/or ecosystem functioning, enabling an integrative
analysis of stability. Moreover, our framework can be com-
bined with other metrics for a detailed analysis of the type of
changes the system suffered.

Assessing the magnitude of change

Comparing hypervolumes in terms of their intersection and
overlap, the distance between their centroids and their
changes in size, provides a measure of the magnitude of
changes an ecosystem has suffered. If different types of com-
ponents are used, these hypervolume metrics are also informa-
tive about their relative stability. In our example, we have

shown that both taxonomic and functional diversity are desta-
bilised by climate and LUCs; yet, functional traits changed
less than PFG abundances, suggesting higher functional sta-
bility. Also, hypervolume metrics allow analysing changes
in ecosystem states both in terms of mean values of the cho-
sen components (centroid distances) and in terms of changes
in their variance. For instance, climate and LUCs affected
mean PFG abundances and mean trait values similarly, but
differed in their effect on PFG and trait variances. Moreover,
since hypervolumes do not summarise different components
into a single metric, but instead describe them as a multidi-
mensional cloud, changes in volume may not only indicate
changes in oscillatory patterns of the considered components,
but also changes in synergies and trade-offs between them.
Furthermore, since the approach can be applied across dif-

ferent types of perturbations, their relative effects on ecosys-
tem stability can be directly compared. This can be achieved
by modelling the response of hypervolume metrics to the com-
binations of perturbations under focus, as we have done here.
In our simulated plant communities, the interaction between
climate and LUCs had a larger impact on hypervolume over-
lap and centroid distances than the effect of habitat and land-
use regime types, indicating that the synergy between these
two global change threats has an overall large effect that may
be generalised across the different Alpine ecosystems.
Additionally, because our framework can be applied to dif-

ferent types of habitats, it allows comparing their responses to
similar perturbations; although we did not present the full
extent of the results from our case study application, we were
able to detect cases where particular habitats did not follow
the general pattern of responses to the simulated perturba-
tions (see Appendix S6).

Assessing the type of change

Using n-dimensional hypervolumes is not only useful to detect
overall changes in ecosystems but can also be informative
about what facets of an ecosystem were most affected by
perturbations. For instance, in our case study, hypervolume
comparisons indicated that PFG abundances were more
affected by land-use and climate changes than trait values. In
case we had been interested in investigating how perturbations
impacted the communities under focus, this information
would have directed our attention towards changes in taxo-
nomic structure and composition, and in population
dynamics, perhaps saving a broader exploratory analysis.
Complementing the analysis of the global variation of the

ecosystem with diversity metrics, productivity measurements, or
even a more detailed analysis on changes that occurred to partic-
ular ecosystem components (not shown here, but see, for exam-
ple, Lenoir et al. 2010) adds a finer understanding of changes
that occurred in the system. Complementary metrics must be
carefully chosen with regard to the focal research question. How
to do this has been discussed elsewhere (see Pavoine & Bonsall
2011) and we recommend that users select metrics that add com-
plementary information to hypervolume metrics, reflecting
changes in both community structure and composition.
However, using these metrics independently may provide a

false notion of stability. For instance, if we had followed

Figure 6 Temporal stability measured by hypervolume overlap. Temporal

stability was analysed by modelling the temporal response of the

proportion of overlap (overlap) under different habitat-land-use

combinations, using generalised additive models (GAMs) with a Gaussian

smoother fitted for each habitat-land-use combination. Each coloured

point corresponds to the comparison between a hypervolume at a given

time slice and the first hypervolume, with colours referring to land-use

(the 1 year of each 15 year time slice is indicated in the x-axis). Dashed

vertical lines indicate the start and end of simulated climate changes.
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classical ways of analysing stability and focused only on pro-
ductivity, we would have concluded that land-use abandon-
ment and climate change do not cause major changes to
Alpine communities; similarly, had we only investigated per-
turbation effects on taxonomic and functional diversity, we
would have not detected large changes in mean trait values of
undisturbed rocky and scree vegetation in result of land-use
abandonment in adjacent areas (see Appendix S6).

Following changes in time

The approach we propose here also enables tracking transient
dynamics when communities have lagged responses to perturba-
tions. To do so, the user should have several observations per
time period and we remind them to fix bandwidths across time
periods for hypervolume calculations. As we have demon-
strated, this can be done across various communities and per-
turbations to analyse which communities are more sensitive and
which perturbations cause the fastest changes. In our case
study, both grasslands and thickets and scrublands suffered
large changes in PFG composition and/or structure in result of
climate change, regardless of land-use management type, due to
the expected species turnover caused by climate warming (Asner
et al. 2004; Gottfried et al. 2012). Alternatively, it is possible to
do ‘space-for-time’ comparisons, where communities are sub-
jected to treatments of different perturbation intensities; in this
case, hypervolumes built from different replica can be com-
pared within community types and across perturbation treat-
ments, or across community types for a given perturbation
treatment, to allow investigating the effect of perturbations and
how different communities respond.
In either case, we believe that the overall measure of ecosys-

tem state that this framework provides may allow applying the
concepts of ecosystem resilience while accounting for the mul-
tivariate and stochastic nature of complex ecosystems. Since
hypervolumes measure and define different states of an ecosys-
tem and enable their comparison, they may be used to estimate
ecosystem resilience, i.e. measuring rates of return to equilibria
– engineering resilience – or the magnitude of perturbation a
community can withstand before shifting states – ecological
resilience (sensu Holling 1996; Gunderson 2000). Although we
have not directly applied our framework to quantify ecosystem
resilience per se, we provide a short discussion on these aspects
in Appendix S6. In future work, it would be interesting to
investigate whether communities are able to return to their
pre-perturbation states (or hypervolumes) if environmental
changes are reversed and assess whether irreversible state-shifts
are associated with particular thresholds of hypervolume met-
rics, such as the distance between centroids. This can have
important implications for the provisioning of ecosystem ser-
vices if we consider that large changes in a community state
will also imply large changes in the ecosystem services it pro-
vides (Folke et al. 2004; Nagendra et al. 2013). Also, investi-
gating under which conditions communities revert to their
original states would enable finding a criterion to define a
‘new’ hypervolume after a disturbance (new stable state).
Although hypervolumes can be said to be ‘different’ if they do
not intersect (overlap = 0), very small overlaps can already be
indicative of large changes in a community. Although this is

not an issue in our simulation data because sufficient time was
allowed for communities to reach new equilibria after pertur-
bations, it can be if real data are used. In this case, we suggest
that users report to changes in overlap to assess the magnitude
of the effect and describe transient dynamics.

Advantages of using hypervolumes to assess community stability

Accounting for the multiplicity of components within an
ecosystem, may reveal changes that cannot be detected if only
one dimension is accounted for (e.g. productivity, diversity).
The reason for this is that measures of diversity and produc-
tivity are community properties, which indicate ecosystem sta-
bility from a particular perspective. Diversity metrics will
often be weighted differently according to species/PFG abun-
dances. The choice of abundance currency has been shown to
affect predictive models of biodiversity (Certain et al. 2014)
and it is likely that it can impact results obtained when fol-
lowing stability of diversity in time. In addition, productivity
will usually represent variations of the most productive species
(Doak et al. 1998; Polley et al. 2007), which may not allow
detecting finer changes in less productive species that may be
important for other ecosystem functions. One strong advan-
tage of our proposed method is that all community compo-
nents chosen can have equal contributions to the analysis of
stability of biodiversity. This allows detecting changes in the
variability of community components without the need to
weight components differently, or to summarise them into a
one-dimensional measure, while still providing an overall mea-
sure of community stability. Furthermore, in complex situa-
tions where habitat mosaics exist and ecotone dynamics are
observed, or when different types of communities are consid-
ered, relationships between community stability and metrics
such as productivity and diversity indices are likely to change
between communities, as well as across different disturbance
regimes, hampering integrated analyses of community stabil-
ity. When analysing ecosystem stability by directly integrating
ecosystem components, this ceases to be an issue: changes
occurring in different communities become comparable and
analysing community stability at the landscape scale or across
different organisational levels becomes possible.
Also, the approach we propose is flexible enough to be applied

to different types of components, from real or simulated data.
The choice of components depends on the focus of the analysis,
but several components can be used separately to provide com-
parative analyses of stability, as we demonstrated here by com-
paring PFG abundances and CWM trait values. With the
increasing popularity of environmental DNA approaches
(Taberlet et al. 2012) and the continuously growing remote sens-
ing datasets, temporal data on community and ecosystem com-
position, at taxonomical, functional, phylogenetic and landscape
levels are more and more available. As these different datasets
open new avenues for the study of ecosystem stability, integrative
tools like the one presented here will be needed to assess stability
across different types of communities, ecosystems and environ-
mental and disturbance gradients in a consistent and robust way.
They also become increasingly important to assess ecosystem sta-
bility under future environmental conditions. With evidence
pointing to increases in frequency and intensity of extreme
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climatic events, such as drought (Allen et al. 2010; IPCC 2012), it
is crucial that models incorporate these events for future biodi-
versity predictions. We have shown that our framework can be
coupled with a dynamic landscape vegetation model to study
community stability under realistic scenarios of future land-use
and climate changes. It can certainly be applied to other
ecological models – like forest gap models (Lischke et al. 2006),
dynamic global vegetation models, DGVMs (Krinner et al.
2005), or dynamic network models (see e.g. Steenbeek et al.
2016) – to study community stability under diverse scenarios (e.g.
climate warming, extreme events, management).
In conclusion, integrating the variability of multiple ecosys-

tem components can provide indication on general ecosystem
stability. It is also informative about what types of perturba-
tions cause the largest changes in ecosystems and which
ecosystem facets are most affected by a given perturbation,
which is useful for assessing community and ecosystem stabil-
ity under forecasts of global change. Although here applied to
Alpine ecosystems, our approach can be extended to any type
of ecosystem and different ecosystem components, having the
potential to be used for different purposes and at different
landscape scales. Finally, this framework is a first step into
the study of stability from a multidimensional perspective in
complex ecosystems composed of habitat mosaics.
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