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Abstract

The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation

models use plant functional types that are summarized to such an extent that they become meaningless for biodiver-

sity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been

developed to address this issue. These models, at the crossroads between phenomenological and process-based

models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is

to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and

processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited

number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins

National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in

vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling.
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Introduction

There is compelling evidence of a new biodiversity cri-

sis with species already facing extinction or shifting

their geographic ranges and altering their phenology in

response to climate change (Parmesan, 2006; Bellard

et al., 2012). Effective conservation strategies to counter-

balance the effects of environmental change are critical

in protecting biological diversity, and need to be sup-

ported by sound biodiversity scenarios (Thuiller et al.,

2008). This challenge should be met by developing new

tools for modeling biodiversity, which involves multi-

ple species and aim to understand and predict changes

in biological diversity (e.g., taxonomic or functional

diversity). However, despite the efforts of the last

10 years, our capacity to predict the impact of environ-

mental changes on biodiversity remains limited

(Pereira et al., 2010).

In this context, modeling vegetation is crucial given

its pivotal role in determining overall biodiversity and

ecosystem functioning. Two different approaches are

traditionally used to model vegetation (Thuiller et al.,

2008). On one hand, phenomenological models (i.e.,

habitat distribution models HDMs, Table 1) can be run

on thousands of species, but do not integrate certain

key mechanisms (e.g., co-existence and demographic

mechanisms), which could hamper their use in biodi-

versity and ecosystem management at regional scale

(Guisan & Thuiller, 2005). On the other hand, process-

based models require much more data and knowledge

so they cannot be applied across large numbers of spe-

cies or large spatial scales. In consequence, models

depicting whole vegetation dynamics over large spatial

extents, namely Dynamic Global Vegetation Models

(DGVM, Table 1) usually involve just a dozen broad

plant functional types (PFTs) often defined ad hoc and

without integrating the recent knowledge of functional

ecology (Harrison et al., 2010). They contain conse-

quently insufficient level of detail to represent plant

diversity, in particular concerning herbaceous species
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(e.g., MC1, Daly et al., 2000; IBIS, Foley et al., 1996; LPJ,

Sitch et al., 2003).

Over the last decade, hybrid dynamic vegetation

models of intermediate complexity (hybrid-DVMs,

Table 1) have been developed. They usually combine

existing process-based models to depict successional

dynamics and/or dispersal, with habitat suitability

models to constrain species distribution by abiotic fac-

tors (Gallien et al., 2010). To involve a sufficient number

of species to represent the whole vegetation diversity at

regional scale, hybrid-DVMs require modeling entities

of intermediate complexity between species level and

broad PFT classifications. These newly defined plant

functional groups (PFGs) should be explicitly

constructed in relation to the hybrid-DVM sub-models,

which have to include the main factors of species distri-

bution and dynamic. Although abiotic constraints,

biotic interactions, and dispersal are explicitly included

in some DGVMs, the available PFTs are not usually

built to model all these ecological mechanisms. For

instance, few classifications have used both the species’

vegetative properties (representing their dynamic

responses to environment) and species’ climatic affinity

(but see Laurent et al., 2004).

Quite independent of the modeling field of research,

functional ecology has always searched for associations

between abiotic and biotic environment and species

characteristics (Calow, 1987). Significant efforts have

been put into grouping species by functional character-

istics to predict grassland (e.g., Lavorel et al., 1998) and

forest ecosystem (e.g., Verheyen et al., 2003) responses

to global changes. These approaches provide much

more detailed PFT than the one usually modeled in

DGVMs. They constitute a sensible theoretical basis for

selecting relevant species characteristics with which to

design new PFGs (Lavorel et al., 1997; Pausas & Lavo-

rel, 2003; Harrison et al., 2010). However, moving from

species-level responses to modeling biodiversity

dynamics requires the inclusion of species characteris-

tics involved in community assembly mechanisms. In

this direction, Herault (2007) for instance proposed an

emergent group approach that aimed to both maximize

niche differentiation between groups and functional

equivalence within groups.

These two different lines of investigation, on the

one hand the biogeochemical approach to build PFT

for DGVMs and on the other hand the functional

groups defined in response to disturbance, require to

be merge to enhance current plant classifications (Har-

rison et al., 2010). In this article, we present a frame-

work for building PFGs for hybrid-DVMs to represent

vegetation dynamics and ecosystem functioning while

Table 1 Main types of vegetation models. The following table lists the main types of existing vegetation models, shows how they

account for the main drivers of species distribution, indicates the scale they are able to cover, and the entities they involve. A

hybrid-DVM involving multiple species is the only approach to model the dynamic of biodiversity at regional scale

Model type Abiotic Biotic Dispersal Scale Entities Examples

Process-based

DGVMs Based on plant physiology

and biogeochemical cycles

Sometimes

competition for

light/water/

space

No Low

resolution

(Large regions

or globe)

PFT representing

main forest types

and 2 for grasses

LPJ (Sitch

et al., 2003)

Forest

Gap

Models

Temperature and

precipitations

Competition for

light and soil

water

In most of

the recent

models

Forest patches Only trees TreeMig

(Lischke

et al., 2006)

Phenomenological

Habitat

suitability

models

Relationship between abiotic

variables and species

presence/absence

observations

No Unlimited

or nothing

Regional to

global, high

resolution

Species BIOMOD

(Thuiller

et al., 2009)

Hybrid

Single

species

Relationship between abiotic

variables and species

presence/absence

observations

No Yes Landscape Species Keith et al.

(2008)

Multiple

species

Relationship between abiotic

variables and species

presence/absence

observations

Competition for

light

Yes Landscape PFG representing

dominant species

LAMOS

(Albert

et al., 2008)
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also depicting biodiversity. We first present the princi-

ples of the framework, its features and adaptation to

different regional settings. We then apply it to regio-

nal flora (National Park in the French Alps) and test

its robustness in relation to the aims of biodiversity

modeling.

Conceptual and methodological framework

The framework relies on the emergent group approach

(Lavorel et al., 1997; Herault, 2007). A set of representa-

tive species is classified based on key biological charac-

teristics, to determine groups of species sharing

ecological strategies. We divided the framework into

four steps (Fig. 1), presenting the associated concepts

and underlying ecological hypotheses for each.

Selecting representative species

Dominant species are usually seen as the main drivers

of vegetation dynamics and ecosystem functioning

(‘Biomass ratio hypothesis’ (Grime, 1998). Moreover,

according to the well-known species-abundance dis-

tribution (Whittaker, 1965), just a few species pro-

duce most of the community’s biomass. In each

vegetation strata (herbaceous, shrub, trees), these spe-

cies are the most important, not only for structuring

the landscape, but also explaining patterns of func-

tional diversity. To reduce the number of candidate

species for determining PFGs, we propose restricting

the classification procedure to these representative

species.

Given that hybrid-DVMs may create new situations

from those observed locally, the dominance criteria

have to account for potential dominance, which can be

estimated using the largest possible number of observa-

tions of species abundance in communities where the

species occurs, even beyond the study area.

Selecting ecological characteristics for species
classification

The rationale of the approach is to select a minimum

set of traits or features which capture the functional

divergence between species and the mechanisms mod-

eled in hybrid-DVMs, and combine species-level

responses to environmental gradients and mechanisms

of community assembly (Fig. 2).

Functional ecologists have identified the key traits

involved in individual plant responses to various envi-

ronmental disturbances (McIntyre et al., 1999; Cornelis-

sen et al., 2003). Relevant traits are called ‘response

traits’ (Lavorel & Garnier, 2002) and mostly relate to

‘vital attributes’, which are key life-history characteris-

tics determining the species sequence along vegetation

succession (Noble & Slatyer, 1980). They include three

groups of traits (Fig. 2, left). One group relates to plant

colonization following disturbance. Two main strate-

gies are considered: either species’ persistence during

the disturbance (e.g., seed dormancy, defenses against

Fig. 1 Iterative steps to build Plant Functional Groups from a regional flora. The first step is the selection of a subset of the flora, which

represents the dominant species, relevant to the modeling the vegetation dynamics. The second step is the selection of a limited number

of key traits not only to represent the vegetation structure and ecosystem functions but also biodiversity. The third step is a classifica-

tion to determine emergent groups. The fourth step aims to attribute the groups’ trait values and producing diversity indices for the

final evaluation.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02783.x
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herbivores or fire) or colonization from a source (e.g.,

dispersal ability, vegetative reproduction). The second

group concerns the species’ ability to establish and

grow, and relates to niche requirements and competi-

tive ability (e.g., plant height or leaf traits) (Fig. 2, left).

The third group concerns life-history traits influencing

species position along ecological successions (e.g.,

maturity age, longevity) (Fig. 2, left).

To move from species-level responses to community

composition and biodiversity, relevant traits must also

capture community assembly mechanisms (Suding

et al., 2008). In doing so, we directly refer to the coexis-

tence mechanisms implemented in hybrid-DVMs.

Three types of mechanisms are commonly distin-

guished in community assembly theory, namely dis-

persal, abiotic filtering, and biotic interactions (Soberon,

2007) (Fig. 2, right). First, dispersal characteristics,

although often considered in functional ecology (Pau-

sas et al., 2004; Herault, 2007), are not included in the

PFT classifications for DVMs. Dispersal mechanisms

are usually involved in parts of hybrid-DVMs to reflect

the spatial dynamics (e.g., dispersal limitation and

source-sink mechanisms, Pulliam, 2000) and need to be

represented by traits related to species dispersal dis-

tances. Second, PFGs need to explicitly merge species

with similar abiotic niches, which account for the main

abiotic forces of the ecosystem studied (e.g., climatic

and soil variables). Although climate tolerance is clo-

sely related to some vegetative traits including in PFT

classification (e.g., leaf size, leaf phenology, and life

form) (Harrison et al., 2010), species may also be

grouped according to their abiotic niche similarity (e.g.,

Fig. 2 The six types of mechanisms for the selection of classification features. Two theoretical frameworks are presented on the sides

and are related to the six categories. Left: theoretical background from functional ecology; Right: theoretical background from commu-

nity ecology; Middle: examples of traits or species characteristics are given for each category.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02783.x
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Laurent et al., 2004). Finally, the interest of involving

multiple species or groups of species is to model biotic

interactions. For instance, competition for light is often

accounted in DVMs (Table 1). More generally speaking,

competition for resources involves two types of mecha-

nisms (Chesson, 2000). The equalizing mechanism

implies a hierarchy of species according to their com-

petitive effect (e.g., measured by leaf traits of plant

height, Fig. 2) and results in the dominance of the best

competitor. The stabilizing mechanism counterbalances

the established hierarchy through niche differentia-

tion (e.g., measured by specific root length or shade

tolerance, Fig. 2) and can be considered as a response

to competition. These two mechanisms are the basis for

maintaining species diversity (Chesson, 2000) and have

been shown to contribute to functional diversity (Navas

& Violle, 2009).

By combining individual responses to environmental

change and community assembly, we have identified

six different features that need to be homogeneous

within PFGs (Fig. 2): (1) resistance to disturbance, (2)

dispersal, (3) tolerance to abiotic conditions, (4)

response to competition, (5) competitive effect, and (6)

demographic characteristics.

Classification procedure

Once traits and species have been selected, the aim is to

reduce the number of modeling entities by defining

emergent groups of species (Lavorel et al., 1997; Pillar,

1999; Herault & Honnay, 2007). This issue is usually

tackled using a clustering algorithm, for instance

agglomerative hierarchical clustering based on a dis-

tance matrix (Pillar, 1999; Herault, 2007; Mouchet et al.,

2008). If the plant traits are continuous, categorical

and/or ordinal, the appropriate measure is the Gower

distance, which mixes categorical and quantitative

traits (Pavoine et al., 2005; Podani & Schmera, 2006).

The agglomerative hierarchical clustering algorithm is

based on the distance matrix and provides a dendro-

gram that is then pruned to form the groups. The

choice of the number of groups can be validated using

several metrics (Halkidi et al., 2001).

Assessing PFGs’ ability to represent biodiversity

The aim here is to evaluate how well the PFG delimita-

tion can capture and predict biodiversity patterns

using hybrid-DVMs. In addition to taxonomic diversity

(TD), functional diversity (FD) is crucial as it directly

relates to ecosystem functioning (Hooper et al., 2005).

Two FD dimensions could be considered. First, func-

tional divergence (FDiv, Mason et al., 2005) is expected

to influence ecosystem processes through complemen-

tary resource use (Tilman et al., 1997). Second, the

functional identity of dominant species has been

shown to be the most relevant determinant for some

biogeochemical processes (Diaz et al., 2007; Mokany

et al., 2008). It can be measured using the community

weighted mean (CWM), which represents the expected

trait value for a random community biomass sample

(Garnier et al., 2004).

Many elements are simplified for the purposes of

clarification, including trait selection and the choice of a

limited number of groups. It is therefore important to

evaluate the amount of information lost during the

process by comparing species-based to PFG-based

functional metrics at community level. In other words,

if PFG-based functional metrics are able to significantly

explain species-based metrics, then the PFG classifica-

tion is robust and can be used for biodiversity model-

ing. Species-based and PFG-based diversity measures

can be compared using the classification traits, which

provide information on the robustness of the clustering,

and using independent traits (not used for the classi-

fication process) providing cross-validation of the

trait selection procedure, and testing the robustness

of newly built PFGs in capturing the main ecosystem

features.

Case study: flora in the Ecrins national park, France

We applied the PFG construction framework to flora in

the Ecrins National Park to represent the whole vegeta-

tion with limited number of plant functional groups

that could be further modeled.

Vegetation database

The Ecrins National Park (‘Ecrins’ hereafter), in the

French Alps (Fig. 3), is characterized by mountainous

to alpine ecosystems (700–4000 m a.s.l.) and contains

over 2000 plant species (Kerguélen, 1993). The National

Alpine Botanical Conservatory (CBNA) provided the

vegetation-plot database of flora in the surrounding

region, including 11 628 community plots and 1579

species sampled between 1980 and 2009 (Fig. 3 and see

Boulangeat et al., 2012). Within each community plot,

species cover (in its strata) was recorded in six classes

(1, less than 1%; 2, 1–5%; 3, 5–25%; 4, 25–50%; 5, 50–
75%; 6, up to 75%) (Braun-Blanquet, 1946). We con-

verted these values to relative abundance using mean

cover class percentages.

Application of the method

Selecting representative species. We derived species dom-

inance from community plots over the whole region

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02783.x
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surrounding the Ecrins (11 628 plots) (Fig. 3). To select

potential dominant species situated in high productiv-

ity plots with multiple strata, we selected species with a

cover class above 25% (cover classes 4–6) in at least

three community plots. We additionally selected spe-

cies with maximum relative abundance of over 20%

and median relative abundance of over 1% to account

for dominant species in low productivity plots (e.g.,

scree, sparse grassland). From this pool of dominant

species we selected the one with a minimum of 10

observations within the Ecrins. Finally, we retained 412

representative species representing together at least

70% abundance in 80% of the community plots within

the Ecrins.

Selecting ecological characteristics for species classifica-

tion. We chose species features to represent the six pre-

viously identified categories (Fig. 2).

1. Resistance to disturbance: In the Ecrins, the main dis-

turbance being grazing by domestic stock, we used

Fig. 3 Study area. The study area is located in the southeast of France in the French part of the Alpine Arc. Gray strips in the inlay indi-

cate the Alpine Convention area. The Ecrins national park, delimited with a bold line, is situated along the Italian border, in the south-

east of France, close to the Mediterranean sea. Community plots that have been surveyed in the region are represented by triangles.

The hillshade background represents the elevation.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02783.x
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a palatability index based on pastoral values

(Jouglet, 1999).

2. Dispersal: was represented by distances classes,

extracted from Vittoz & Engler (2007) and addi-

tional determination following the same protocol.

This classification is based on the most efficient dis-

persal mode, plant height, habitat, seed mass and

dispersal attributes (e.g., wings, pappi). It identifies

seven classes that discriminate a log-increase of dis-

persal distances.

3. Tolerance to abiotic conditions: We conducted a Principal

Component Analysis (PCA) on 19 BIOCLIM vari-

ables (biologically meaningful variables derived

from temperature and rainfall values, see Support-

ing Information Table S3) (Hutchinson et al., 2009)

at 250 m resolution in the Ecrins. Pairwise similari-

ties of species abiotic niches were estimated from

the overlap of their observed distributions (D-met-

ric, Schoener, 1970) projected into the first PCA

plan (Broennimann et al., 2012).

4. Response to competition: Because competition for light

is the species interaction commonly modeled in

DVMs (Table 1), we chose to depict response to

competition by shade tolerance. We used an ecolog-

ical indicator value for species light requirements

(Landolt et al., 2010), adapted to the study region.

5. Competitive effect: Following the same idea of species

interactions modeled by competition for light, spe-

cies’ competitive ability was represented by plant

height. This trait is also interesting as it is a good

proxy for individual biomass (Moles et al., 2009)

thus partly representing ecosystem productivity

(De Bello et al., 2010b).

6. Demographic characteristics: Given the limited amount

of available data and uncertainty related to species

demography (e.g., longevity), we used a pre-classi-

fication based on Raunkiaer’s life forms (Raunkiaer,

1934) that represent the main differences in demo-

graphic traits such as individual longevity, age at

maturity, and fecundity (Chapin III et al., 1996;

Lavorel et al., 1997; Lavorel & Garnier, 2002). For

instance, in our data set, known maturity ages were

clearly different for phanerophytes (11.57 ±
5.68 years), chamaephytes (4.36 ± 2.48 years), and

other species (2.77 ± 0.80 years). As the herbaceous

species were mostly hemicryptophytes (261 spe-

cies), with few geophytes (34 species) and thero-

phytes (17 species), we only distinguished three

classes, namely phanerophyte, chamaephyte, and

herbaceous species. The advantage of using life

forms is also to capture a wide range of plant traits

related to ecosystem functioning. For instance, the

simple distinction between woody and non-woody

species is related litter decomposition and litter pro-

duction (Dorrepaal, 2007).

Classification procedure. For each life form group (phan-

erophyte, chamaephyte, and herbaceous), we built a

distance matrix using Gower’s formula (Gower, 1971).

Dominant species with missing data were removed,

which restricted the set to 290 species representing

together at least 70% abundance in 60% of the Ecrins’

community plots. The total pairwise distance between

species x and species y was as follows:

Dðx; yÞ ¼ ð1=5Þ:ðjHx �Hyj=ðHmax �HminÞ
þ jLx � Lyj=NL þ jDx �Dyj=ND

þ jPx � Pyj=Np þ ð1�Oðx; yÞÞÞ
ð1Þ

where H is plant height (squared-transformed), L light

class, D dispersal class (exponentially transformed), P

palatability class, O climatic overlap (Schoener’s D met-

ric), and Nt the number of classes for trait t. We used the

Unweighted Pair Group Method with Arithmetic Mean

clustering algorithm (UPGMA, Kaufman & Rousseeuw,

1990), as it has been shown to distort the distance matrix

less than other methods (Mouchet et al., 2008). We used

the Dunn index, the R-squared (Halkidi et al., 2001), the

index of Calinski & Harabasz (Calinski & Harabasz,

1974), and the average silhouette (Kaufman & Rous-

seeuw, 1990) to choose the number of groups.

The classification identified height phanerophyte

groups (P1–P8), six chamaephyte groups (C1–C6), and
10 herbaceous groups (H1–H10) (see Supporting Infor-

mation Figure S1 and Table S1). Phanerophyte groups

separated pioneer trees (e.g., Larix decidua P4, and Betula

alba P8) from climax trees for various types of climate

(e.g., external alps P5, internal alps P6), intermediate

forests (e.g., Pinus cembra P1, Populus tremula P2) and

subordinate trees (e.g., Acer opalus P7, Fraxinus excelsior

P3).

Chamaephyte groups distinguished between shrubs

(e.g., Alnus alnobetula C4), dwarf shrubs (e.g., Vaccinium

myrtillus C6, Calluna vulgaris C5), cushion plants (e.g.,

Silene acaulis C3), and other chamaephytes (e.g., Teucri-

um chamaedrys C1, Cerastium uniflorum C2). Some of

these groups were found in mountainous to subalpine

ecosystems (C1, C4, C5) and other modeled alpine eco-

systems (C2, C3, C6).

Among the 10 herbaceous groups, one represented

understorey species (Prenanthes purpurea H4). Two

other groups represented mountainous to subalpine

herbaceous, separated by their dispersal abilities either

over short (Cacalia alliariae H6) or long distances

(Arrhenatherum elatius H3). Four groups were mostly

found in subalpine ecosystems and differed in terms

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02783.x
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of their dispersal abilities, palatability or climatic pref-

erences (H2, H5, H7, and H10). Finally, three groups

formed alpine meadows with different grazing toler-

ance, ranging from high (e.g., Nardus stricta H9, Festuca

quadriflora H1) to low palatability (Cirsium spinosissimum

H8).

Assessing PFGs’ ability to represent biodiversity. We tested

the resulting PFGs’ ability to represent plant diversity

by comparing species-based measurements (also

including rare species originally excluded from the

classification procedure) to PFG-based measurements

of diversity. Using the representative species associated

to each PFG we built PFG communities, with each PFG

having cover class equal to the highest cover class of

contributing species in each plot, followed by a stan-

dardization to estimate the PFGs’ relative abundance.

Concerning functional diversity, we selected several

sets of traits reasonably represented in our database

(i.e., involving at least 647 species, see Table 2).

The seven supplementary traits (woodiness, mowing

tolerance, dispersal vector, seed mass, leaf area, specific

leaf area, and leaf dry matter content) were extracted

from the database ANDROSACE (Thuiller et al. unpub-

lished, see Supporting Information Table S3). We attrib-

uted trait values to each PFG after removing outlier

species (i.e., with mean distances to other species of the

group falling outside of the 95% left-handed confidence

interval) (see Supporting Information Figure S2 and

Table S2).

We computed different measures of biodiversity at

community scale for the 1902 Ecrins community plots

sampled, and for the 1128 correctly represented ones

(i.e., where PFGs represent at least 70% of plot abun-

dance). First, we computed the Community Weighted

Mean (CWM) for plant height and two independent

traits (i.e., not used to build PFGs), namely seed mass

and mowing tolerance. Second, we used Rao Quadratic

entropy as a common framework for taxonomic diver-

sity and functional divergence (De Bello et al., 2010a).

We computed functional divergence for classification

traits and for independent traits. In addition, we com-

puted functional divergence using traits of the LHS

scheme of ecological strategies, as proposed by West-

oby (1998), because they are intended to represent the

main inter-specific differences in ecological strategies.

Generally speaking, we observed strong correlations

between species-based and PFG-based indices, which

suggest that the main biodiversity patterns are ade-

quately captured by our PFG classification (Table 2 and

Fig. 4). Note that both functional identity (CWM) and

functional divergence (FDiv) are preserved after the

reduction of the overall vegetation to 24 PFGs. For clas-

sification traits, functional diversity indices (CWMH

and FDivC) there was a significant correlation between

species-based and PFG-based implementations

(Table 2), proving that there was a sufficient number of

groups to represent the properties of the vegetation.

Correlations for indices involving independent traits

(CWMM, CWMS, and FDivI) were also strong and dem-

onstrated that the few selected species characteristics

were capable of capturing trait syndromes. Moreover,

the functional divergence of the LHS scheme (FDivLHS)

was well captured, showing that the main plant strate-

gies were comprehensively summarized by the 24

PFGs. However, the associated graph showed that plots

with low FDivLHS were not well classified (Fig. 4d).

The robustness of the classification was also illustrated

Table 2 Correlations between species-based and PFG-based diversity metrics. The number of species involved in the comparison

varies according to the availability of trait data. N = 1902 plots corresponds to all community plots in the Ecrins national park.

N = 1128 plots corresponds to the well-represented plots, where dominant species represent at least 70% of the abundance. Three

different Community Weighted Means are computed for plant height (CWMH), mowing tolerance (CWMM) and seed mass

(CWMS). Three different functional divergence measures are proposed, with varying trait combinations. FDc (classification traits):

plant height, Raunkiaer life form, and dispersal distance class.FDI (independent traits): Mowing tolerance, woodiness, dispersal

vector, and seed mass. FDLHS: plant height, seed mass, leaf traits (Leaf area, Specific Leaf Area, Leaf Dry Matter Content). TD is a

measure of taxonomic diversity (Simpson index)

Species-based diversity

measure

PFG-based diversity

measure

Correlation N = 1902

plots

Correlation N = 1128

plots

Number of

species

Classification traits

CWMH CWMH 0.96 0.99 959

FDc FDC 0.77 0.90 982

Independent traits

CWMM CWMM 0.65 0.74 974

CWMS CWMS 0.55 0.62 657

FDI FDI 0.55 0.71 963

FDLHS FDLHS 0.68 0.75 647

TD TD 0.52 0.76 1579

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2012.02783.x
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by the limited impact of missing data and thus of domi-

nant species. With only 70% of the species identified as

representative (290 out of 412), the main diversity

trends were preserved, even taking into account plots

with missing representative species (Table 2). Finally,

although designed to represent functional diversity, the

PFGs also captured much taxonomic diversity, in par-

ticular when all the dominant species from all plots

were represented (Pearson correlation = 0.76, Table 2).

Discussion

A comprehensive framework for the selection of key
classification features

Previous studies have highlighted the need to move

from life form-based classification to emergent group

classification based on functional traits (Epstein et al.,

2001; Jeltsch et al., 2008; Harrison et al., 2010; Kattge
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Fig. 4 Comparisons of species-based and plant functional groups (PFG)-based measurements of diversity. The following graphs show

the relationship between species-based and PFG-based measurements of diversity. Results for all 1902 plots are shown as gray dots

and results for the 1128 well-represented plots are shown as black dots. Four different indices are presented. (a) Taxonomic diversity.

(b) Functional diversity of classification traits, including plant height, Raunkiaer life form, and dispersal distance class. (c) Functional

diversity of independent traits, including mowing tolerance, woodiness, dispersal vector, and seed mass. (d) Functional diversity of

Leaf-Height-Seed traits, including plant height, seed mass, and three leaf traits (Leaf area, Specific Leaf Area, Leaf Dry Matter Content).
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et al., 2011). Here, we propose a framework to include

the minimum set of relevant traits with which PFG can

represent the overall plant diversity (including herba-

ceous ecosystems), and can be used in dynamic models

of vegetation at regional scale. In the example from our

study, the selected traits made it possible to use 24

PFGs to depict functional identity and divergence in

species assemblages, which make them suitable for

assessing biodiversity. In addition, the 24 PFGs may be

involved in hybrid-DVMs because they represent the

main mechanisms of these models (competition for

resources, tolerance to abiotic conditions, and dis-

persal). They consequently offer the possibility to

model the spatial and temporal dynamics of biodiver-

sity patterns at regional scale that no approach can

currently provide. The main limitation to including

more species and improving trait selection remains

data availability, although considerable efforts have

been made to compile global plant trait databases

(Kattge et al., 2011).

Representing diversity using a limited number of entities

The comparison between species-based and PFG-based

functional diversity indices shows that although some

information is lost, the variation of functional diversity

between plots remains similar (Table 2). Previous stud-

ies have already showed that CWM is well described

even when only the species that produce the largest

proportion of the biomass are used (Garnier et al., 2004;

Pakeman & Quested, 2007) because these species are

expected to be the determinant of ecosystem properties

(Grime, 1998). Concerning taxonomic diversity, the bio-

mass ratio hypothesis suggests that dominant species

are structuring the communities, and may facilitate the

establishment of subordinate species (Grime, 1998). A

strong association may therefore exist between domi-

nant and subordinate species, allowing dominant spe-

cies to reflect the diversity of the entire community.

However, ignoring less abundant species might make it

difficult to represent the dynamics of the vegetation in

certain situations. For instance, some very special habi-

tats such as scree slopes, or peat bogs with mostly rare

species might be poorly modeled.

Classifying species into groups is justified by func-

tional redundancy (Walker, 1992), but although we

assumed that dominant species represent all the rele-

vant characteristics of the vegetation and that emergent

groups are clearly distinct, it is more likely that species

are positioned along a functional continuum (Westoby

et al., 2002). Therefore, some species may have charac-

teristics that are shared by several groups or continuous

traits that overlap between two groups. New methods

need to be developed to optimize the number of

groups. For instance, they could include fuzzy classifi-

cation methods (e.g., Pillar & Sosinski, 2003) and opti-

mize correlations of functional diversity measures

(with species-level based measures) in addition to tra-

ditional indices measuring homogeneity within, and

heterogeneity between groups.

Future directions

The validity of plant functional classifications has been

tested in the literature using experimental (e.g.,

Bret-Harte et al., 2008; Keith et al., 2008), empirical

(e.g., McIntyre & Lavorel, 2001; Pausas et al., 2004), and

theoretical approaches (e.g., Bradstock et al., 1998; Bond

et al., 2005). However, neither these studies nor our

own account for vegetation dynamics. Additional work

is needed to test the validity of these groups in a

dynamic context, for instance retrieving the observed

diversity and vegetation structure using a hybrid-

DVM. We also suggest that our approach is tested in

other regions of the world, in different biomes

(Mediterranean, sub-tropical) where different ecologi-

cal mechanisms are structuring the vegetation (e.g.,

fires rather than grazing).

Acknowledgements

The research leading to these results received funding from the
European Research Council under the European Community’s
Seven Framework Programme FP7/2007-2013 Grant Agreement
no. 281422. IB was funded by the French ‘Agence Nationale de
la Recherche’ with the project SCION (ANR-08-PEXT-03) and
by the European Commission’s FP6 ECOCHANGE project
(GOCE-CT-2007-036866). We would also like to thank the Ecrins
National Park (especially Cédric Dentant and Richard Bonnet),
for their valuable input and insightful comments on our work.
Thanks also to Version Original for checking and correcting the
English language in this article.

References

Albert CH, Thuiller W, Lavorel S, Davies ID, Garbolino E (2008) Land-use change

and subalpine tree dynamics: colonization of Larix decidua in French subalpine

grasslands. Journal of Applied Ecology, 45, 659–669.

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of cli-

mate change on the future of biodiversity. Ecology Letters, 15, 365–377.

Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in

a world without fire. New Phytologist, 165, 525–538.

Boulangeat I, Lavergne S, Van Es J, Garraud L, Thuiller W (2012) Niche breadth, rar-

ity and ecological characteristics within a regional flora spanning large environ-

mental gradients. Journal of Biogeography, 39, 204–214.

Bradstock RA, Bedward M, Kenny BJ, Scott J (1998) Spatially-explicit simulation of

the effect of prescribed burning on fire regimes and plant extinctions in shrub-

lands typical of south-eastern Australia. Biological Conservation, 86, 83–95.
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