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Abstract

During the last decade, despite strenuous efforts to develop new models and compare different approaches, few

conclusions have been drawn on their ability to provide robust biodiversity projections in an environmental change

context. The recurring suggestions are that models should explicitly (i) include spatiotemporal dynamics; (ii) consider

multiple species in interactions and (iii) account for the processes shaping biodiversity distribution. This article pre-

sents a biodiversity model (FATE-HD) that meets this challenge at regional scale by combining phenomenological

and process-based approaches and using well-defined plant functional groups. FATE-HD has been tested and vali-

dated in a French National Park, demonstrating its ability to simulate vegetation dynamics, structure and diversity in

response to disturbances and climate change. The analysis demonstrated the importance of considering biotic interac-

tions, spatio-temporal dynamics and disturbances in addition to abiotic drivers to simulate vegetation dynamics. The

distribution of pioneer trees was particularly improved, as were all undergrowth functional groups.
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Introduction

Environmental changes impact all components of biodi-

versity, leading to species extinctions, shifts in species

distributions and alterations to species interaction net-

works (Van der Putten et al., 2009). In this context,

modelling tools play a crucial role in simulating the

potential consequences of global changes on biodiver-

sity (Thuiller et al., 2008; Bellard et al., 2012). To pro-

vide reliable forecasts at regional scale, where dynamic

range shifts take place and where biodiversity is man-

aged, there is a necessary modelling trade-off between

the number of species modelled and the level of mecha-

nism details implemented. On the one hand, phenome-

nological models may account for many species

(Thuiller et al., 2011) but ignore spatio-temporal

dynamics and present extrapolation issues (Dormann

et al., 2012). On the other hand, knowledge and data

constraints force mechanistic models to focus on a lim-

ited extent, number of species and/or mechanisms. For

instance, a species-by-species approach may account

for species demography and dispersal but usually

neglects species interactions (e.g. Dullinger et al., 2012).

A forest model (e.g. LANDIS, He et al., 1999) describes

tree–tree interactions but ignores herbaceous species.

A global dynamic vegetation model (e.g. LPJ, Sitch

et al., 2003) uses a small number of plant functional

types (PFT) representing tree and herbaceous species,

but is not detailed enough to encompass plant diversity

at regional scale (Harrison et al., 2010). To overcome

these limitations, the development of new models

should combine approaches, using the latest theoretical

advances (Gallien et al., 2010; Dormann et al., 2012;

Thuiller et al., 2013).

The first challenge is to consider enough species to

represent the whole community dynamics (Kissling

et al., 2012). One approach to addressing plant diversity

is to only select and model the dominant species, which

is typically the case in forest gap models (Bugmann,

2001). However, focusing only on trees is not necessar-

ily suitable for biodiversity assessment, as it does not

represent plant diversity across an ecosystem. When

several habitat types are considered, regional to global

vegetation models traditionally model a limited set of

plant functional types (PFTs) to simplify floristic com-

plexity (Foley et al., 1996; Daly et al., 2000; Sitch et al.,

2003). However, although model combinations have

been developed which integrate more PFTs (e.g. LPJ-

GUESS, Hickler et al., 2004), vegetation diversity is still

under represented. In an attempt to reconcile vegeta-

tion modelling with recent advances in functional and

community ecology, Boulangeat et al. (2012a) proposed
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a theoretical framework to create plant functional

groups (PFGs) that can meaningfully represent regional

scale vegetation diversity. This is a promising approach

for the field of landscape modelling.

The second challenge is to keep an easily parame-

tered model, whilst integrating the three main mecha-

nisms driving species distributions over environmental

and disturbance gradients into a single modelling

framework, thereby allowing them to interact over time

and space:

1 Physiological constraints, each individual’s intrinsic

limitation to withstand a range of abiotic environ-

mental conditions, are assumed to be most relevant

in determining large-scale plant species distribution

(Woodward, 1987). The abiotic filtering thereby

determines the pool of species that can potentially

co-occur and interact in a given location. In forest

models, abiotic constraints are usually accounted for

using demographic parameters which vary according

to environmental variables (e.g. yearly minimum

winter temperature and day degree sum influence

tree recruitment in TreeMig, Lischke et al., 2006).

However, the parameterization of these relationships

is highly time-consuming. As an alternative, recent

works have used the phenomenological approach of

habitat suitability models (HSM) to represent abiotic

constraints on species distributions in spatio-tempo-

rally explicit models (e.g. Keith et al., 2008; Dullinger

et al., 2012).

2 Although biotic interactions are crucial to determine

species’ local abundances (Boulangeat et al., 2012b;

Kunstler et al., 2012), they are often neglected in spe-

cies distribution models or, at best, included via

proxies (e.g. Meier et al., 2010; Giannini et al., 2013).

At landscape scale, models implementing plant inter-

actions generally focus on competition for light (Bug-

mann, 2001). Other existing competition models (e.g.

for soil resources) are too complex to be integrated

into landscape models.

3 Dispersal is crucial to model species’ range changes

and source-sink dynamics (Pulliam, 1988). Moreover,

seed dispersal interacts with the local population

dynamic to determine the species’ ability to track

favourable environments (Pulliam, 2000). It is there-

fore vital to account for dispersal using spatially and

temporally explicit models. To ensure computational

effectiveness, spatially explicit landscape models

usually aggregate individuals into cohorts, and use

phenomenological representation of processes by sto-

chastic algorithms and semiquantitative rules (Perry

& Enright, 2006).

This article presents FATE-HD, a spatially explicit

landscape vegetation model addressing the two

aforementioned challenges. It integrates the most

important mechanisms driving vegetation dynamics,

structure and diversity (i.e. biotic interactions, dispersal

and abiotic filtering) to simulate species or PFG

responses to both environmental variation and distur-

bance regimes. FATE-HD has been tested in the French

Alps, where it was parameterized for 24 PFGs repre-

senting plant diversity in a national park. The effect

and the importance of each mechanism (abiotic

filtering, biotic interaction and dispersal) in predicting

vegetation structure and dynamics were analysed.

FATE-HD’s overall performance in retrieving the domi-

nant vegetation distribution in different habitat types

was then compared with that of habitat suitability

models. As expected, PFG distributions were more con-

strained and accurate using FATE-HD as it takes into

account biotic interactions, disturbances and temporal

dynamics. Accounting for all these mechanisms largely

improved the predicted distribution of small trees and

undergrowth PFG. However, the effects were minimal

for subalpine herbaceous species, which tolerate a large

range of biotic conditions and disturbances, as well as

for alpine PFGs, which rarely interact with taller plants

(better competitors for light) given their specific cold

habitat. Finally, FATE-HD performed well enough

given the complexity of the modelled system and the

described processes, which provides new avenues for

future applications such as analysing the spatio-tempo-

ral response of the functional plant diversity to

combined climate and land-use change scenarios.

Materials and methods

The model

FATE-HD is a dynamic landscape vegetation model that simu-

lates interactions between plant modelling entities (e.g. species

or plant functional groups), their population dynamics and

dispersal, whilst taking into account external drivers such as

disturbance regimes, and environmental variations. The

model is built on past conceptual and technical developments

(Albert et al., 2008; Midgley et al., 2010) but has been entirely

recoded in C++ and revisited. An overview of how it operates

is presented below (see Appendix S1 for a detailed descrip-

tion). Four inter-related submodels simulate the overall

dynamics:

1 Succession model: Based on the ‘FATE’ model (Moore &

Noble, 1990), it describes the within-pixel succession

dynamics in an annual time step. Vegetation height is repre-

sented by a limited number of strata to incorporate the

shading process (Fig. 1a). Within a pixel, the light resource

for each stratum is calculated from the total abundance of

all PFGs across all the upper strata. Within-pixel spatial het-

erogeneity in light resources is not taken into consideration,

which is an important criterion for selecting the appropriate
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model resolution. Five processes describe PFG demography

(germination, recruitment, growth, survival and fecundity,

see Table 1).

2 Habitat suitability model: Modelling how habitat suitability

affects species population dynamics is tricky given the lim-

ited knowledge on the type and form of this relationship.

Gallien et al. (2010) suggested a parsimonious approach

using only presence-absences or a linear link. In FATE-HD,

the probability for recruitment and seed production occur-

ring is calculated every year according to the habitat suit-

ability of the PFG in the pixel in question. Over time, the

probability of presence is thus linearly related to fecundity

and establishment. Accounting for interannual variability

allows species coexistence via temporal niches. Mortality

does not depend on habitat suitability, as the immediate

effects of annual abiotic conditions on plant mortality are

not clear in the literature. Habitat suitability for each PFG

can be obtained from various sources such as correlative

species distribution models (Guisan & Thuiller, 2005) or

mechanistic niche models (Chuine & Beaubien, 2001).

3 Seed dispersal model: The quantity of produced seeds

depends on the abundances of mature PFGs and their

habitat suitability. A seed dispersal model determines

seed inflow in each pixel (Fig. 1c). From the source, three

circles of influence are defined using distance parameters.

In the first circle, 50% of the seeds are distributed uni-

formly. In the second circle, 49% of the seeds are distrib-

uted with the same concentration as in the first circle but

by pairs of pixels, simulating the spatial autocorrelation

of dispersed seeds. In the third circle, 1% of the seeds

fall into a random pixel. This seed dispersal model

behaves similar to a continuous kernel function (see Fig.

S1a) but is very effective and requires only a few param-

eters (Vittoz & Engler, 2007).

Table 1 Demographic processes. Each demographic process is listed with its dependent variables and species traits required for

the parameterization

Process Response variable Dependent variable Species specific trait used for the parameterization

Germination Germinants Light conditions, seed bank Shade tolerance, woodiness

Recruitment Seedlings Light conditions, habitat suitability,

germinants

Shade tolerance, number of years at maturity

Growth Height Age Longevity, maturity age, plant canopy height

Survival Cohort abundance Age, light conditions Longevity, shade tolerance

Fecundity New seeds Mature abundance, habitat suitability –

(b) (a)

(d)

(c)

Fig. 1 Conceptual diagram of FATE-HD. The whole area is divided in grid-cells in which an independent succession model (FATE)

regulates the PFG life cycle. PFG abundances are structured by age into cohorts and each cohort is attributed to a height stratum

according to the growth parameters. Four submodels affect this cycle at various levels. Shading regulates interactions between cohorts

affecting germination, recruitment and survival. Habitat suitability affects the recruitment and fecundity rates, and disturbances affect

PFG survival and fecundity. The seed dispersal model makes FATE-HD spatially explicit by connecting grid-cells. It depends on the

amount of seeds produced by mature plants and affects each PFG’s seed bank in each cell.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2368–2378
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4 Disturbance model: Several disturbance models can be

parameterized to remove vegetation, affect fecundity, kill

seeds or activate dormant seeds according to each PFG’s tol-

erance or sensitivity to the given disturbance. (Fig. 1d).

Case study - plant functional groups (PFGs) and
parameterization

This study took place in the French Alps, in the Ecrins

National Park (hereafter ‘PNE’) (Fig. 2) which covers a surface

area of 178 400 hectares and is characterized by mountainous

to alpine ecosystems (669 m to 4102 m a.s.l) with a majority of

open habitats (60%), hosting a rich flora (around 2000 species).

The agricultural activity consists of extensive grazing (50%),

some crop fields and mown grasslands (15%), and forest man-

agement (10%).

We used the plant functional group classification proposed

and validated in Boulangeat et al. (2012a) for the same study

area. It was built using an emergent group approach based on

six plant characteristics involved in the most important coexis-

tence mechanisms when modelling vegetation dynamics: bio-

climatic niche, competitive effect and response for light

resources, dispersal ability, demography and response to dis-

turbance. The 24 groups obtained (Table 2) proved to contain

most of the information required to estimate vegetation biodi-

versity including species richness and functional diversity.

FATE-HD was run over a regular grid containing 258 582

pixels at a resolution of 100 m (Fig. 2). We defined five strata

to calculate plant interactions (0–1.5 m; 1.5–4 m; 4–10 m; 10–

20 m; above 20 m), which can be linked to field data (presence

of three layers: 0–1 m; 1–4 m; >4 m). Demographic parameters

(Table 1) were derived from the literature and expert assess-

ment (see Appendix S2). Seed dispersal distance classes were

assigned to all representative species from each PFG, from an

available database built by Vittoz & Engler (2007) and other

experts. The median class was given to the group and the

associated parameters were found in Vittoz & Engler (2007)

and Engler & Guisan (2009) (see Appendix S2).

We considered the two ongoing annual disturbances

(domestic grazing and mowing) in the park, located and

characterized in the ‘DELPHINE’ database. This database is a

comprehensive landscape mapping of the park including

vegetation type, structure and associated disturbances

(http://www.ecrins-parcnational.fr/telechargements/doc_

Fig. 2 The study area. The Ecrins National Park is located in

the geographic centre of the French Alps. For the simulations

we excluded any body of water, rocks and ice (black zones).

Table 2 List of the 24 plant functional groups used in the

simulations to represent vegetation structure and diversity in

the study area. These groups have been defined according to

the species’ dispersal abilities, canopy height, shade tolerance,

bioclimatic niche and palatability. H1 to H10 represent herba-

ceous plants (mostly Hemicryptophyts). C1 to C6 represent

Chamaephyts. P1 to P8 represent Phanerophyts. The interpre-

tation was made a posteriori based on expert knowledge of

determinant species and the PFG’s average attributes

PFG Interpretation

H1 Alpine species (which do not tolerate shade, and have

a short dispersal distance)

H2 Mountainous species which tolerate nitrophilous

soils and have a long dispersal distance

H3 Mountainous to lowland species found in wet

niches and which have a long dispersal distance

H4 Undergrowth and shadow species which do not

tolerate full light

H5 Mountainous to subalpine species which have a short

dispersal distance and tolerate dry soils

H6 Tall plants typical of megaphorbiaies which can form

undergrowth

H7 Plants species found in rocky habitats and

undergrowth at all elevations

H8 Subalpine to alpine species not usually grazed and

which have a short dispersal distance

H9 Short subalpine to alpine species which have long

dispersal distance

H10 Mountainous species which have a long dispersal

distance and tolerate shade

C1 Thermophilous chamaephytes which have a long

dispersal distance

C2 Alpine and subalpine chamaephytes species

C3 Chamaephytes which have a short dispersal distance

C4 Tall shrubs

C5 Mountainous to subalpine heath found in dry climates

C6 Mountainous to subalpine heath found in wet climates

P1 Thermophilous pioneer trees (deciduous trees and

pines)

P2 Small deciduous pioneer trees (e.g. colonizing

riversides)

P3 Tall forest edge trees

P4 Tall pioneer (larch)

P5 Late succession trees found in wet climates

P6 Intermediate succession trees found in dry climates

P7 Small forest edge trees

P8 Small pioneer found in cold climates (white birch)

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2368–2378
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download/157-latlas-delphine.html). Following the available

classification (light, extensive and intensive grazing), we built

three grazing disturbance models which affected an increasing

proportion of PFGs at determined locations. Five response

classes were considered, depending on the age of the PFG

(1 year old trees, other trees below 1.5 m, juvenile herbs,

mature herbs and senescent herbs). The responses were either

death or ‘resprouting’ that prevents mature plants from pro-

ducing seeds. The proportion of affected individuals was

related to the PFG’s palatability class. A fourth disturbance

model was created to represent mowing, and was associated

to the removal of all trees above 1.5 m (see Appendix S2).

Habitat suitability was modelled for each PFG using the bio-

mod2 package in R (Thuiller et al., 2009). The presences and

absences of species representative of each PFG were extracted

from the CBNA database, which includes relev�es from inside

the park and from the whole French Alps (Boulangeat et al.,

2012a), and pooled together to obtain PFG distribution. These

were then related to seven environmental variables: slope,

percentage of calcareous soil and five ‘BIOCLIM’ variables

(Hutchinson et al., 2009). Five different statistical models were

chosen to cover a range of techniques from standard

regression (e.g. Generalized Linear Model) to advanced

machine learning (e.g. Generalized Boosted Models). We com-

bined all predictions into one single output estimated as the

weighted sum of predictions, the weights reflecting the mod-

els’ performance (Thuiller et al., 2009). The models were cali-

brated over the whole French Alps to avoid extrapolation

issues (Thuiller et al., 2004) (see Appendix S3 for details and

data sources).

Simulations workflow

Our simulations aimed to reconstruct the current vegetation

distribution. The landscape was first initialized with annual

seeding (addition of seeds from each PFG at all locations

across the map), which allows the forest canopy to form and

undergrowth PFGs to settle. The seeding lasted 300 years,

which was enough for all PFG distributions to reach quasi-

equilibrium (Appendix S5, Fig. S5a). A stabilization phase

requiring 500 additional years (Fig. S5b) was then necessary

to restore a realistic demography (limited fecundity). Finally,

to compare model outputs to current observations, current

disturbance regimes were applied during the last 200 years

of the stabilization phase (Fig. S5c). Trees above 1.5 m were

first cut from all areas currently disturbed (representing past

deforestation) and then annual grazing and mowing distur-

bances were applied. Before recording the outputs (years 10,

20, 30, 40 and 50 years after initialization), trees were again

removed from managed areas mimicking the impact of regu-

lar grassland maintenance. The simulations were replicated

three times and this workflow was used for all the variations

presented below.

Sensitivity analyses

We first analysed the contribution of the three coexistence

mechanisms (abiotic filtering, biotic interactions and dispersal)

to the vegetation structure (forest cover and strata). To assess

the importance of the abiotic filtering, we compared the base-

line simulation to a simulation in which habitat suitability was

equal to one throughout (i.e. no habitat suitability constraint)

for all PFGs. The importance of biotic interactions was

assessed by comparing the baseline simulation to a simulation

where all species tolerated all light conditions (i.e. no mortal-

ity due to light conditions). We confronted simulated tree

cover (above 1.5 m) with empirical observations in 3345 plots

(covering 20% of the studied area) where the observed vegeta-

tion structure was assumed to be homogeneous at a resolution

of 100 m. As observed tree cover has been estimated on plots

covering on average 9000 m2, we applied a focal statistic to

both observed and simulated maps which assigned each cell

with the average value of the nine adjacent cells. The results

are presented separately for seven habitat types (alpine natu-

ral grasslands, subalpine unexploited habitats, exploited

grasslands and meadows, mountainous forests, mountainous

open habitats, lowlands and rocky habitats, see Appendix S4).

We also confronted the simulated abundance of three layers

(0–1.5 m; 1.5–4 m; above 4 m) with the observed layer’s pres-

ence or absence in nonopen habitats (2189 plots).

Finally, the effect of dispersal limitations was tested using

two additional simulation scenarios. Dispersal distance limita-

tions were released in a simulation where dispersal distance

was considered to be unlimited, but the production of seeds

was still determined by population size. The effect of seed

production on dispersal limitations was investigated with a

simulation where a seeding (seeds added at all locations

across the map) occurred every 5 years. For all simulations,

the colonization dynamic was followed using the percentage

of tree cover (above 1.50 m) recorded every 5 years, for

disturbed and undisturbed areas separately.

Model accuracy

Measuring the accuracy of biodiversity models for a region

where the modelled entities (PFGs) are not explicitly recorded

in the field is challenging. In coherence with the simulations’

spatial grain, we used the ‘DELPHINE’ database, which

describes vegetation composition and structure for 18 381

plots covering the whole park. We removed wetlands, lakes

and villages from the analysis. We established a correspon-

dence table between the 90 vegetation types described in DEL-

PHINE and our 24 PFGs (Appendix S4). For each vegetation

type, a PFG was either considered as expected absent, or

surely present (i.e. representative of the vegetation type), or

potentially present.

Simulated PFG abundances were converted into presence-

absences with a threshold chosen to maintain prevalence at

the same level as in the observed plots. Model performance

(sensitivity, specificity and error rate) was assessed using 8841

sampled plots where vegetation types have been described.

These plots constitute a completely independent data set from

the one used to calibrate the HSMs. For each PFG, we also

compared the HSM predictions to the FATE-HD predictions

to test the overall effect of including biotic interactions, dis-

persal and disturbances in addition to the abiotic filter.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2368–2378
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Results

Sensitivity of the vegetation structure to biotic and
abiotic forcing

In the baseline simulation, tree cover was, on average,

slightly overestimated (+4%, Fig. 3). However, it varied

amongst habitat types. Tree cover in lowlands and

mountainous forests was underestimated (�10% and

�4% respectively) but was overestimated in rocky and

alpine habitats (+7%). In forests, the abundance of each

stratum was higher in the pixels where it was observed

(Fig. 4). However, the difference in simulated abun-

dances between locations where the stratum has been

observed or not was small for the lowest stratum (her-

baceous) (Fig. 4a).

The removal of competition for light did not

significantly change the tree cover simulations (15%

overestimation on average). However, in this case,

abundance in the lower strata (<1.5 m) was similar

across pixels regardless of whether the layer was

observed or not (Fig. 4a). Removing the abiotic con-

straint generally led to more pixels being colonized by

the forest. In particular, rocky and alpine habitats were

largely colonized by trees (Fig. 3). In consequence, in

this case the whole forest structure was wrongly

predicted (Fig. 4).

Effects of dispersal limitations

In the baseline simulation, tree cover stabilized around

250 years after the seeding phase (Fig. 5a). This broadly

corresponds to the average life span of phanerophyt

PFGs. At low elevations (below 1800 m a.s.l.), average

tree cover slightly decreased over time, suggesting a

potential edge effect (no seeds are received from out-

side of the study area). Tree cutting (to create managed

areas) had a similar effect given that sources (mature

trees) established in managed areas were removed,

which disturbed the source-sink dynamic and

decreased the abundance of adjacent forests (Fig. 5a).

Under current management, the simulated trees slowly

colonize pastures and meadows. This is consistent with

the known regular human interventions on tree seed-

lings in grazed or mown areas.

Both unlimited dispersal distance and regular seed-

ing scenarios showed deviations from the baseline sim-

ulation, highlighting the importance of dispersal

limitation to obtain realistic vegetation dynamics. With

an unlimited dispersal distance, tree abundance signifi-

cantly decreased after seeding or tree cutting, dropping

to a lower level than in the baseline simulation. Indeed,

because the seeds of each PFG are regularly dispersed

over the whole grid, a higher proportion of seeds

fell into unsuitable grid-cells with no chance of
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recruitment. Conversely, with regular seeding, tree

cover after disturbance increased faster than in the

baseline simulation. These results suggest that the tree

colonization rate was both limited by dispersal distance

and tree demography which determines the production

of seeds by mature plants.

Accuracy: FATE-HD vs. HSM

On average, FATE-HD predicted PFG distributions bet-

ter (error rate = 0.32) than HSMs (error rate = 0.38),

although the difference varied across PFGs. FATE-HD

improved the simulated distributions of most PFGs

with a restricted tolerance to light levels (H3, H4, H9,

C3, P3, P4, P5, P6, P7) by refining their distribution

(higher specificity, see Table 2; Fig. 6). However, the

biotic constraints applied by FATE-HD appeared too

stringent for some PFGs (H3, P3 and P7) resulting in

low sensitivity (Table 3). FATE-HD also performed bet-

ter than HSM for phanerophyt PFGs sensitive to the

grazing disturbance, whether restricted by shade toler-

ance or not (P1, P2, P4). On the contrary, simulated dis-

tributions of PFG unconstrained by disturbance, shade

tolerance or dispersal limitation as expected did not

improve using FATE-HD (e.g. H7, Fig. 6).

Discussion

Integrating the different processes shaping biodiversity

into a single modelling framework is crucial as it makes

it possible to assess their interacting effects (Thuiller

et al., 2013). The substantial work in landscape ecology

to build mechanistic plant succession models based on

life history traits and competition for light constitutes a

strong basis from which this goal can be achieved

(Noble & Slatyer, 1980). The model presented here

expands the one proposed by Moore & Noble (1990),

including abiotic constraints, spatially explicit seed dis-

persal and disturbance regimes (Albert et al., 2008;

Midgley et al., 2010).

Abiotic constraints

The effects of abiotic constraints (e.g. climate) are

integrated into the succession model as environmental

forcing, influencing both fecundity and recruitment.
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Fig. 4 Observed presence or absence vs. simulated abundance

of forest strata. The average simulated abundance for each stra-

tum across analysed pixels is confronted with the recorded

presence or absence of each stratum. Three simulations are com-

pared: (i) a baseline simulation (all drivers), (ii) a simulation

without light condition constraints and (iii) a simulation with-

out the habitat constraint. (a) Lower stratum (b) Intermediate

stratum (c) Upper stratum. Note that there is a small discrep-

ancy for the first height threshold between the observations

(1 m) and the simulations (1.5 m).
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Abiotic constraints are modelled at regional scale to

determine the suitability of the abiotic environment in

each grid-cell. Community dynamics then occur within

the grid-cells, with an appropriate level of detail for

landscape modelling. The integration of this physiolog-

ical aspect, although treated using correlative HSM in

our example, means FATE-HD is applicable under cli-

mate change scenarios and takes into account all the

abiotic drivers relevant at the study grain (100m). Our

simulations have shown that the climate and soil driv-

ers used limit tree colonization in the alpine belt

(Fig. 3), particularly in siliceous alpine crests (details

not shown). Alternatively, habitat suitability could be

determined based on expert knowledge or a process-

based model.

As in Conlisk et al. (2013), we found that habitat suit-

ability models had a high impact on model outputs. It

is particularly crucial to minimize type II errors (false

negatives) because the way FATE-HD integrates habitat

suitability makes it possible to refine PFG distributions

within their habitat limits (see Fig. 6). Conversely, false

positives might be tolerated in the habitat model as

other processes are involved in limiting PFG distribu-

tions. In our example, specificity (proportion of correct

absences) generally increased when additional con-

straints to HSM were applied, and error rates were con-

sequently reduced (Table 3). Similarly, HSMs have

been shown to overpredict species richness, especially

at intermediate climatic conditions (Pineda & Lobo,

2012; Pottier et al., 2013). However, as in Pottier et al.

(2013), we show that this pattern varies across species,

depending on if the species is subject to competition for

light (e.g. P1), or if its distribution is mainly determined

by abiotic constraints (e.g. H7). The recurring conclu-

sion is that additional factors such as species interac-

tions and disturbances should be accounted for.
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Fig. 5 Temporal change in tree cover above 1.5 m during the

simulations. The simulation encompasses four phases: (I) Seed-

ing (continuous addition of seeds of all PFG everywhere), (II)

Stabilization (no seeding anymore), (III) Current disturbance

regime is set up, (IV) Quasi-equilibrium; outputs are recorded.

All trees located in areas currently grazed or mown were cut

prior to settling current grazing and mowing regimes that occur

where the forest has been removed in the past. Trees were cut

again prior to recording results because the current grazing

pressure is unable to maintain open the grasslands, which are

then regularly maintained open through human intervention.

Results from the three repetitions are overlaid. Grid-cells are

grouped if they are disturbed (mown or grazed) or not (a)

Simulation with regular parameters. (b) Simulation with unlim-

ited dispersal distance for all PFGs (c) Simulation with seeding

every 5 years in the last two phases which gives an unlimited

seed production in addition to unlimited dispersal distance

(III and IV).
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Biotic interactions

The simulations have shown that biotic interactions

through competition for light are necessary to model a

realistic forest structure (Fig. 4). Including both abiotic

and biotic constraints in landscape dynamics thereby

improves predictions for many PFGs, especially phane-

rophyts, undergrowth species or shade intolerant spe-

cies (Table 3). On the other hand, the vegetation

structure analysis suggests that herbaceous PFG distri-

butions are not sufficiently restricted (Fig. 4a). This is

unsurprising as no competition occurs between herba-

ceous PFGs, which share the same stratum. However,

producing a more comprehensive representation of

these competitive interactions is a genuine challenge.

As this is an annual model, a herbaceous species that

grows late in the season would not compete for light

with an early-season species. Taking competition for

soil resources into account would be a major improve-

ment but existing soil resource models require numer-

ous parameters which are not necessarily fully

available on large spatial scales. Temporal niches may

also be relevant, because they may counterbalance a

species’ competitive ability (Alexander et al., 2012).

FATE-HD may include seed dormancy (Appendix S1),

but the major issue is again the lack of data to

(a)

(b)

Fig. 6 Habitat suitability maps and FATE-HD outputs vs. for two PFGs. Given that there is very little variation from one repetition to

another, the map presented here is from one repetition. Modelled absences (red) and presences (blue) are darkened where false predic-

tions have been detected (a) Distribution of P1 (Thermophilous pioneer trees) (b) Distribution of H7 (Plants species found in rocky habi-

tats and undergrowth at all elevations).
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parameterize dormancy for all PFGs. Model perfor-

mance might also be improved by adding local stochas-

tic disturbances such as avalanches or rock falls that

would allow shade intolerant PFG and trees to coexist.

Indeed, FATE-HD overpredicts tree cover in subalpine,

alpine, rocky and open mountainous habitats where

avalanches and rock falls are common.

Spatio-temporal dynamics

Population dynamics and dispersal are modelled in

FATE-HD in the same way as in other landscape mod-

els. The individuals are grouped into cohorts to model

species demography, and dispersal kernel functions are

used to disperse the produced seeds over the gridded

study area. Nevertheless, FATE-HD integrates simpli-

fied algorithms. It uses a simple semiquantitative

approach to describe plant succession (FATE, Moore &

Noble, 1990), and proposes a stochastic dispersal

algorithm that is on average similar to a traditional ker-

nel function but more computationally efficient

(Appendix S1). This strategy means the model can

include numerous functional groups and uses available

data (e.g. Vittoz & Engler 2007).

Our work is the first to present and test a spatially

explicit model involving multiple entities capable of

representing vegetation diversity, whilst integrating the

main coexistence mechanisms. In protected areas, it

would make it possible to forecast both final and tran-

sient vegetation states in response to climate and land

use change scenarios. It could also be used to test com-

munity ecology theories. For instance, FATE-HD mod-

els neutral community dynamics when PFGs have the

same functional traits except dispersal ability. Con-

versely, including differences in terms of recruitment,

survival and growth, but not in dispersal ability would

lead to an extreme case of pure niche theory.
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